版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市宝山区市级名校2025届高三第四次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,若函数在区间上有三个零点,则实数的取值范围是()A. B. C. D.2.若,,,点C在AB上,且,设,则的值为()A. B. C. D.3.某几何体的三视图如图所示,则该几何体中的最长棱长为()A. B. C. D.4.函数的大致图象是A. B. C. D.5.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A.1 B. C. D.6.若关于的不等式有正整数解,则实数的最小值为()A. B. C. D.7.函数f(x)=的图象大致为()A. B.C. D.8.下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是()A.深圳的变化幅度最小,北京的平均价格最高B.天津的往返机票平均价格变化最大C.上海和广州的往返机票平均价格基本相当D.相比于上一年同期,其中四个城市的往返机票平均价格在增加9.设递增的等比数列的前n项和为,已知,,则()A.9 B.27 C.81 D.10.已知抛物线,过抛物线上两点分别作抛物线的两条切线为两切线的交点为坐标原点若,则直线与的斜率之积为()A. B. C. D.11.由曲线围成的封闭图形的面积为()A. B. C. D.12.已知集合,,则A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若,则______.14.的展开式中,常数项为______;系数最大的项是______.15.将函数的图像向右平移个单位,得到函数的图像,则函数在区间上的值域为__________.16.锐角中,角,,所对的边分别为,,,若,则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线极坐标方程为.若直线交曲线于,两点,求线段的长.18.(12分)的内角的对边分别为,且.(1)求;(2)若,点为边的中点,且,求的面积.19.(12分)已知,函数,(是自然对数的底数).(Ⅰ)讨论函数极值点的个数;(Ⅱ)若,且命题“,”是假命题,求实数的取值范围.20.(12分)在如图所示的多面体中,平面平面,四边形是边长为2的菱形,四边形为直角梯形,四边形为平行四边形,且,,(1)若分别为,的中点,求证:平面;(2)若,与平面所成角的正弦值,求二面角的余弦值.21.(12分)已知函数.(1)当时,求函数的值域;(2)的角的对边分别为且,,求边上的高的最大值.22.(10分)如图,四棱锥中,底面,,点在线段上,且.(1)求证:平面;(2)若,,,,求二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.2、B【解析】
利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.3、C【解析】
根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,,过S作,连接BD,,再求得其它的棱长比较下结论.【详解】如图所示:由三视图得:该几何体是一个三棱锥,且平面SAC平面ABC,,过S作,连接BD,则,所以,,,,该几何体中的最长棱长为.故选:C【点睛】本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.4、A【解析】
利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,,可排除D选项;当时,,当时,,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题.5、C【解析】
根据程序图,当x<0时结束对x的计算,可得y值.【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【点睛】本题考查程序框图,是基础题.6、A【解析】
根据题意可将转化为,令,利用导数,判断其单调性即可得到实数的最小值.【详解】因为不等式有正整数解,所以,于是转化为,显然不是不等式的解,当时,,所以可变形为.令,则,∴函数在上单调递增,在上单调递减,而,所以当时,,故,解得.故选:A.【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.7、D【解析】
根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.8、D【解析】
根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.【详解】对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.故选:D【点睛】本小题主要考查根据条形图和折线图进行数据分析,属于基础题.9、A【解析】
根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.10、A【解析】
设出A,B的坐标,利用导数求出过A,B的切线的斜率,结合,可得x1x2=﹣1.再写出OA,OB所在直线的斜率,作积得答案.【详解】解:设A(),B(),由抛物线C:x2=1y,得,则y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故选:A.点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A,B,,再求切线PA,PB方程,求点P坐标,再根据得到最后求直线与的斜率之积.如果先设点P的坐标,计算量就大一些.11、A【解析】
先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【详解】封闭图形的面积为.选A.【点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.12、D【解析】
因为,,所以,,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
根据向量加法和减法的坐标运算,先分别求得与,再结合向量的模长公式即可求得的值.【详解】向量,则,则因为即,化简可得解得故答案为:【点睛】本题考查了向量坐标加法和减法的运算,向量模长的求法,属于基础题.14、【解析】
求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项.【详解】的展开式的通项为,令,得,所以,展开式中的常数项为;令,令,即,解得,,,因此,展开式中系数最大的项为.故答案为:;.【点睛】本题考查二项展开式中常数项的求解,同时也考查了系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.15、【解析】
根据图像的平移变换得到函数的解析式,再利用整体思想求函数的值域.【详解】函数的图像向右平移个单位得,,,.故答案为:.【点睛】本题考查三角函数图像的平移变换、值域的求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意整体思想的运用.16、【解析】
由余弦定理,正弦定理得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案.【详解】由题意得由正弦定理得化简得又为锐角三角形,则,,.故答案为【点睛】本题主要考查了正弦定理和余弦定理的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】
由,化简得,由,所以直线的直角坐标方程为,因为曲线的参数方程为,整理得,直线的方程与曲线的方程联立,,整理得,设,则,根据弦长公式求解即可.【详解】由,化简得,又因为,所以直线的直角坐标方程为,因为曲线的参数方程为,消去,整理得,将直线的方程与曲线的方程联立,,消去,整理得,设,则,所以,将,代入上式,整理得.【点睛】本题考查参数方程,极坐标方程的应用,结合弦长公式的运用,属于中档题.18、(1);(2).【解析】
(1)利用正弦定理边化角,再利用余弦定理求解即可.(2)为为的中线,所以再平方后利用向量的数量积公式进行求解,再代入可解得,再代入面积公式求解即可.【详解】(1)由,可得,由余弦定理可得,故.(2)因为为的中线,所以,两边同时平方可得,故.因为,所以.所以的面积.【点睛】本题主要考查了利用正余弦定理与面积公式求解三角形的问题,同时也考查了向量在解三角形中的运用,属于中档题.19、(1)当时,没有极值点,当时,有一个极小值点.(2)【解析】试题分析:(1),分,讨论,当时,对,,当时,解得,在上是减函数,在上是增函数。所以,当时,没有极值点,当时,有一个极小值点.(2)原命题为假命题,则逆否命题为真命题。即不等式在区间内有解。设,所以,设,则,且是增函数,所以。所以分和k>1讨论。试题解析:(Ⅰ)因为,所以,当时,对,,所以在是减函数,此时函数不存在极值,所以函数没有极值点;当时,,令,解得,若,则,所以在上是减函数,若,则,所以在上是增函数,当时,取得极小值为,函数有且仅有一个极小值点,所以当时,没有极值点,当时,有一个极小值点.(Ⅱ)命题“,”是假命题,则“,”是真命题,即不等式在区间内有解.若,则设,所以,设,则,且是增函数,所以当时,,所以在上是增函数,,即,所以在上是增函数,所以,即在上恒成立.当时,因为在是增函数,因为,,所以在上存在唯一零点,当时,,在上单调递减,从而,即,所以在上单调递减,所以当时,,即.所以不等式在区间内有解综上所述,实数的取值范围为.20、(1)见解析(2)【解析】试题分析:(1)第(1)问,转化成证明平面,再转化成证明和.(2)第(2)问,先利用几何法找到与平面所成角,再根据与平面所成角的正弦值为求出再建立空间直角坐标系,求出二面角的余弦值.试题解析:(1)连接,因为四边形为菱形,所以.因为平面平面,平面平面,平面,,所以平面.又平面,所以.因为,所以.因为,所以平面.因为分别为,的中点,所以,所以平面(2)设,由(1)得平面.由,,得,.过点作,与的延长线交于点,取的中点,连接,,如图所示,又,所以为等边三角形,所以,又平面平面,平面平面,平面,故平面.因为为平行四边形,所以,所以平面.又因为,所以平面.因为,所以平面平面.由(1),得平面,所以平面,所以.因为,所以平面,所以是与平面所成角.因为,,所以平面,平面,因为,所以平面平面.所以,,解得.在梯形中,易证,分别以,,的正方向为轴,轴,轴的正方向建立空间直角坐标系.则,,,,,,由,及,得,所以,,.设平面的一个法向量为,由得令,得m=(3,1,2)设平面的一个法向量为,由得令,得.所以又因为二面角是钝角,所以二面角的余弦值是.21、(1).(2)【解析】
(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域,得出结论.(2)由题意利用余弦定理、三角形的面积公式、基本不等式求得的最大值,可得边上的高的最大值.【详解】解:(1)∵函数,当时,,.(2)中,,∴.由余弦定理可得,当且仅当时,取等号,即的最大值为3.再根据,故当取得最大值3时,取得最大值为.【点睛】本题考查降幂公式、两角和的正弦公式,考查正弦函数的性质,余弦定理,三角形面积公式,所用公式较多,选用恰当的公式是解题关键,本题属于中档题.22、(1)证明见解析(2)【解析】
(1)要证明平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 策展推广方案
- 重庆财经学院《成本管理》2023-2024学年第一学期期末试卷
- 禅修茶道文化研究报告
- 白银外墙保温板施工方案
- 畅想人工智能研究报告
- 玻璃幕墙栏杆安装施工方案
- 三年级数学计算题专项练习及答案
- 测速路段设计方案
- 测试压力的课程设计
- 仲恺农业工程学院《机械及工程制图》2021-2022学年第一学期期末试卷
- 【课件】点线传情-造型元素之点线面+课件高中美术人美版(2019)选择性必修1+绘画
- 2024年麻醉药品及精神药品合理应用培训考试试题
- 2024-2025学年新教材高中物理 第一章 动量守恒定律 1 动量教案 新人教版选择性必修第一册
- 农村户改厕施工协议书
- 药事管理实训报告
- 品管圈PDCA持续质量改进提高静脉血栓栓塞症规范预防率
- 儿童支气管哮喘规范化诊治建议(2020年版)
- 2023年人教版中考物理专题复习-九年级全册简答题专题
- ISO28000:2022供应链安全管理体系
- 屋顶光伏发电应急预案
- 保护性约束课件
评论
0/150
提交评论