贵州省遵义市高中名校2025届高考仿真卷数学试卷含解析_第1页
贵州省遵义市高中名校2025届高考仿真卷数学试卷含解析_第2页
贵州省遵义市高中名校2025届高考仿真卷数学试卷含解析_第3页
贵州省遵义市高中名校2025届高考仿真卷数学试卷含解析_第4页
贵州省遵义市高中名校2025届高考仿真卷数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省遵义市高中名校2025届高考仿真卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像2.如图,在中,,且,则()A.1 B. C. D.3.若复数(为虚数单位),则的共轭复数的模为()A. B.4 C.2 D.4.已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为()A.2020 B.20l9 C.2018 D.20175.()A. B. C. D.6.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0 B.1 C.2 D.37.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占2019年贫困户总数的比)及该项目的脱贫率见下表:实施项目种植业养殖业工厂就业服务业参加用户比脱贫率那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的()A.倍 B.倍 C.倍 D.倍8.已知函数f(x)=xex2+axeA.1 B.-1 C.a D.-a9.已知,函数,若函数恰有三个零点,则()A. B.C. D.10.设复数满足,则()A.1 B.-1 C. D.11.执行如图所示的程序框图,如果输入,则输出属于()A. B. C. D.12.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是()A.圆,但要去掉两个点 B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点二、填空题:本题共4小题,每小题5分,共20分。13.设平面向量与的夹角为,且,,则的取值范围为______.14.三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有________种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).15.小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_____.16.已知x,y>0,且,则x+y的最小值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为等腰梯形,,为等腰直角三角形,,平面底面,为的中点.(1)求证:平面;(2)若平面与平面的交线为,求二面角的正弦值.18.(12分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.19.(12分)已知椭圆的右焦点为,离心率为.(1)若,求椭圆的方程;(2)设直线与椭圆相交于、两点,、分别为线段、的中点,若坐标原点在以为直径的圆上,且,求的取值范围.20.(12分)a,b,c分别为△ABC内角A,B,C的对边.已知a=3,,且B=60°.(1)求△ABC的面积;(2)若D,E是BC边上的三等分点,求.21.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求实数的取值范围22.(10分)已知,,为正数,且,证明:(1);(2).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.2、C【解析】

由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案【详解】由,则,即,所以,又共线,则.故选:C【点睛】此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.3、D【解析】

由复数的综合运算求出,再写出其共轭复数,然后由模的定义计算模.【详解】,.故选:D.【点睛】本题考查复数的运算,考查共轭复数与模的定义,属于基础题.4、B【解析】

根据题意计算,,,计算,,,得到答案.【详解】是等差数列的前项和,若,故,,,,故,当时,,,,,当时,,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.5、A【解析】

分子分母同乘,即根据复数的除法法则求解即可.【详解】解:,故选:A【点睛】本题考查复数的除法运算,属于基础题.6、B【解析】

用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.【详解】①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.故选:B【点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.7、B【解析】

设贫困户总数为,利用表中数据可得脱贫率,进而可求解.【详解】设贫困户总数为,脱贫率,所以.故年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍.故选:B【点睛】本题考查了概率与统计,考查了学生的数据处理能力,属于基础题.8、A【解析】

令xex=t,构造g(x)=xex,要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,【详解】令xex=t,构造g(x)=xex,求导得g'(x)=故g(x)在-∞,1上单调递增,在1,+∞上单调递减,且x<0时,g(x)<0,x>0时,g(x)>0,g(x)max=g(1)=1e,可画出函数g(x)的图象(见下图),要使函数f(x)=xex2+axex-a有三个不同的零点x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故选A.【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.9、C【解析】

当时,最多一个零点;当时,,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当时,,得;最多一个零点;当时,,,当,即时,,在,上递增,最多一个零点.不合题意;当,即时,令得,,函数递增,令得,,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,,.故选.【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.10、B【解析】

利用复数的四则运算即可求解.【详解】由.故选:B【点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.11、B【解析】

由题意,框图的作用是求分段函数的值域,求解即得解.【详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B【点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.12、A【解析】

根据题意可得,即知C在以AB为直径的圆上.【详解】,,,又,,平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【点睛】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据已知条件计算出,结合得出,利用基本不等式可得出的取值范围,利用平面向量的数量积公式可求得的取值范围,进而可得出的取值范围.【详解】,,,由得,,由基本不等式可得,,,,,因此,的取值范围为.故答案为:.【点睛】本题考查利用向量的模求解平面向量夹角的取值范围,考查计算能力,属于中等题.14、192【解析】

根据题意,分步进行分析:①,在三对父子中任选1对,安排在相邻的位置上,②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案.【详解】根据题意,分步进行分析:①,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排方法;②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.15、【解析】

从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有种,小李会其中的三道题,则抽到的2道题小李都会的情况共有种,所以其概率为.故答案为:【点睛】此题考查根据古典概型求概率,关键在于根据题意准确求出基本事件的总数和某一事件包含的基本事件个数.16、1【解析】

处理变形x+y=x()+y结合均值不等式求解最值.【详解】x,y>0,且,则x+y=x()+y1,当且仅当时取等号,此时x=4,y=2,取得最小值1.故答案为:1【点睛】此题考查利用均值不等式求解最值,关键在于熟练掌握均值不等式的适用条件,注意考虑等号成立的条件.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】

(1)取的中点,连接,易得,进而可证明四边形为平行四边形,即,从而可证明平面;(2)取中点,中点,连接,易证平面,平面,从而可知两两垂直,以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系,进而求出平面的法向量,及平面的法向量为,由,可求得平面与平面所成的二面角的正弦值.【详解】(1)证明:如图1,取的中点,连接.,,,,且,四边形为平行四边形,.又平面,平面,平面.(2)如图2,取中点,中点,连接.,,平面平面,平面平面,平面,平面,两两垂直.以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系.由,可得,在等腰梯形中,,易知,.则,,设平面的法向量为,则,取,得.设平面的法向量为,则,取,得.因为,,,所以,所以平面与平面所成的二面角的正弦值为.【点睛】本题考查线面平行的证明,考查二面角的求法,利用空间向量法是解决本题的较好方法,属于中档题.18、(1)(2)【解析】

(1)根据题意即可写出该批次产品长度误差的绝对值的频率分布列,再根据期望公式即可求出;(2)由(1)可知,任取一件产品是标准长度的概率为0.4,即可求出随机抽取2件产品,都不是标准长度产品的概率,由对立事件的概率公式即可得到随机抽取2件产品,至少有1件是标准长度产品的概率,判断其是否符合生产要求;当不符合要求时,设生产一件产品为标准长度的概率为,可根据上述方法求出,解,即可得出最小值.【详解】(1)由柱状图,该批次产品长度误差的绝对值的频率分布列为下表:00.010.020.030.04频率0.40.30.20.0750.025所以的数学期望的估计为.(2)由(1)可知任取一件产品是标准长度的概率为0.4,设至少有1件是标准长度产品为事件,则,故不符合概率不小于0.8的要求.设生产一件产品为标准长度的概率为,由题意,又,解得,所以符合要求时,生产一件产品为标准长度的概率的最小值为.【点睛】本题主要考查离散型随机变量的期望的求法,相互独立事件同时发生的概率公式的应用,对立事件的概率公式的应用,解题关键是对题意的理解,意在考查学生的数学建模能力和数学运算能力,属于基础题.19、(1);(2).【解析】

(1)由椭圆的离心率求出、的值,由此可求得椭圆的方程;(2)设点、,联立直线与椭圆的方程,列出韦达定理,由题意得出,可得出,【详解】(1)由题意得,,.又因为,,所以椭圆的方程为;(2)由,得.设、,所以,,依题意,,易知,四边形为平行四边形,所以.因为,,所以.即,将其整理为.因为,所以,.所以,即.【点睛】本题考查椭圆方程的求法和直线与椭圆位置关系的综合运用,解题时要认真审题,注意挖掘题设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论