2025届湖北省恩施州清江外国语学校高考数学五模试卷含解析_第1页
2025届湖北省恩施州清江外国语学校高考数学五模试卷含解析_第2页
2025届湖北省恩施州清江外国语学校高考数学五模试卷含解析_第3页
2025届湖北省恩施州清江外国语学校高考数学五模试卷含解析_第4页
2025届湖北省恩施州清江外国语学校高考数学五模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省恩施州清江外国语学校高考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1 B. C. D.22.已知函数的定义域为,且,当时,.若,则函数在上的最大值为()A.4 B.6 C.3 D.83.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A. B. C. D.4.复数的虚部是()A. B. C. D.5.若双曲线的焦距为,则的一个焦点到一条渐近线的距离为()A. B. C. D.6.已知函数,则不等式的解集是()A. B. C. D.7.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为()A. B. C. D.8.已知函数,则函数的零点所在区间为()A. B. C. D.9.公比为2的等比数列中存在两项,,满足,则的最小值为()A. B. C. D.10.已知函数,则下列结论错误的是()A.函数的最小正周期为πB.函数的图象关于点对称C.函数在上单调递增D.函数的图象可由的图象向左平移个单位长度得到11.已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为()A. B. C. D.12.已知复数满足,则的最大值为()A. B. C. D.6二、填空题:本题共4小题,每小题5分,共20分。13.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.获胜概率—0.40.30.8获胜概率0.6—0.70.5获胜概率0.70.3—0.3获胜概率0.20.50.7—则队获得冠军的概率为______.14.函数在的零点个数为_________.15.已知向量满足,,则______________.16.函数的定义域为,其图象如图所示.函数是定义域为的奇函数,满足,且当时,.给出下列三个结论:①;②函数在内有且仅有个零点;③不等式的解集为.其中,正确结论的序号是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足:,,且对任意的都有,(Ⅰ)证明:对任意,都有;(Ⅱ)证明:对任意,都有;(Ⅲ)证明:.18.(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.19.(12分)如图,三棱柱的所有棱长均相等,在底面上的投影在棱上,且∥平面(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.20.(12分)已知抛物线:()的焦点到点的距离为.(1)求抛物线的方程;(2)过点作抛物线的两条切线,切点分别为,,点、分别在第一和第二象限内,求的面积.21.(12分)市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).已知小张该笔贷款年限为20年,月利率为0.004.(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.参考数据:.22.(10分)已知三棱柱中,,是的中点,,.(1)求证:;(2)若侧面为正方形,求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解【详解】由题中图像可得,由变速直线运动的路程公式,可得.所以物体在间的运动路程是.故选:C【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.2、A【解析】

根据所给函数解析式满足的等量关系及指数幂运算,可得;利用定义可证明函数的单调性,由赋值法即可求得函数在上的最大值.【详解】函数的定义域为,且,则;任取,且,则,故,令,,则,即,故函数在上单调递增,故,令,,故,故函数在上的最大值为4.故选:A.【点睛】本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.3、D【解析】双曲线的渐近线方程是,所以,即,,即,,故选D.4、C【解析】因为,所以的虚部是,故选C.5、B【解析】

根据焦距即可求得参数,再根据点到直线的距离公式即可求得结果.【详解】因为双曲线的焦距为,故可得,解得,不妨取;又焦点,其中一条渐近线为,由点到直线的距离公式即可求的.故选:B.【点睛】本题考查由双曲线的焦距求方程,以及双曲线的几何性质,属综合基础题.6、B【解析】

由导数确定函数的单调性,利用函数单调性解不等式即可.【详解】函数,可得,时,,单调递增,∵,故不等式的解集等价于不等式的解集..∴.故选:B.【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.7、B【解析】

设,,,根据向量线性运算法则可表示出和;分别求解出和,,根据向量夹角的求解方法求得,即可得所求角的余弦值.【详解】设棱长为1,,,由题意得:,,,又即异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.8、A【解析】

首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【详解】当时,.当时,为增函数,且,则是唯一零点.由于“当时,.”,所以令,得,因为,,所以函数的零点所在区间为.故选:A【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.9、D【解析】

根据已知条件和等比数列的通项公式,求出关系,即可求解.【详解】,当时,,当时,,当时,,当时,,当时,,当时,,最小值为.故选:D.【点睛】本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.10、D【解析】

由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,,所以B正确;当时,,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.11、D【解析】

根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.12、B【解析】

设,,利用复数几何意义计算.【详解】设,由已知,,所以点在单位圆上,而,表示点到的距离,故.故选:B.【点睛】本题考查求复数模的最大值,其实本题可以利用不等式来解决.二、填空题:本题共4小题,每小题5分,共20分。13、0.18【解析】

根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.【详解】由表中信息可知,胜C的概率为;若B进入决赛,B胜D的概率为,则A胜B的概率为;若D进入决赛,D胜B的概率为,则A胜D的概率为;由相应的概率公式知,则A获得冠军的概率为.故答案为:0.18【点睛】本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.14、1【解析】

本问题转化为曲线交点个数问题,在同一直角坐标系内,画出函数的图象,利用数形结合思想进行求解即可.【详解】问题函数在的零点个数,可以转化为曲线交点个数问题.在同一直角坐标系内,画出函数的图象,如下图所示:由图象可知:当时,两个函数只有一个交点.故答案为:1【点睛】本题考查了求函数的零点个数问题,考查了转化思想和数形结合思想.15、1【解析】

首先根据向量的数量积的运算律求出,再根据计算可得;【详解】解:因为,所以又所以所以故答案为:【点睛】本题考查平面向量的数量积的运算,属于基础题.16、①③【解析】

利用奇函数和,得出函数的周期为,由图可直接判断①;利用赋值法求得,结合,进而可判断函数在内的零点个数,可判断②的正误;采用换元法,结合图象即可得解,可判断③的正误.综合可得出结论.【详解】因为函数是奇函数,所以,又,所以,即,所以,函数的周期为.对于①,由于函数是上的奇函数,所以,,故①正确;对于②,,令,可得,得,所以,函数在区间上的零点为和.因为函数的周期为,所以函数在内有个零点,分别是、、、、,故②错误;对于③,令,则需求的解集,由图象可知,,所以,故③正确.故答案为:①③.【点睛】本题考查函数的图象与性质,涉及奇偶性、周期性和零点等知识点,考查学生分析问题的能力和数形结合能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析(3)见解析【解析】分析:(1)用反证法证明,注意应用题中所给的条件,有效利用,再者就是注意应用反证法证题的步骤;(2)将式子进行相应的代换,结合不等式的性质证得结果;(3)结合题中的条件,应用反证法求得结果.详解:证明:(Ⅰ)证明:采用反证法,若不成立,则若,则,与任意的都有矛盾;若,则有,则与任意的都有矛盾;故对任意,都有成立;(Ⅱ)由得,则,由(Ⅰ)知,,即对任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,则,取时,有,与矛盾.则.得证.点睛:该题考查的是有关命题的证明问题,在证题的过程中,注意对题中的条件的等价转化,注意对式子的等价变形,以及证题的思路,要掌握证明问题的方法,尤其是反证法的证题思路以及证明步骤.18、(1)43,47;(2)分布列见解析,.【解析】

(1)根据茎叶图即可得到中位数和众数;(2)根据数据可得任取一名优秀员工的概率为,故,写出分布列即可得解.【详解】(1)中位数为,众数为.(2)被调查的名工人中优秀员工的数量,任取一名优秀员工的概率为,故,,,的分布列如下:故【点睛】此题考查根据茎叶图求众数和中位数,求离散型随机变量分布列,根据分布列求解期望,关键在于准确求解概率,若能准确识别二项分布对于解题能够起到事半功倍的作用.19、(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)连接交于点,连接,由于平面,得出,根据线线位置关系得出,利用线面垂直的判定和性质得出,结合条件以及面面垂直的判定,即可证出平面平面;(Ⅱ)根据题意,建立空间直角坐标系,利用空间向量法分别求出和平面的法向量,利用空间向量线面角公式,即可求出直线与平面所成角的余弦值.【详解】解:(Ⅰ)证明:连接交于点,连接,则平面平面,平面,,为的中点,为的中点,平面,,平面,平面,平面平面(Ⅱ)建立如图所示空间直角坐标系,设则,,,,,设平面的法向量为,则,取得,设直线与平面所成角为,直线与平面所成角的余弦值为.【点睛】本题考查面面垂直的判定以及利用空间向量法求线面角的余弦值,考查空间想象能力和推理能力.20、(1)(2)【解析】

(1)因为,可得,即可求得答案;(2)分别设、的斜率为和,切点,,可得过点的抛物线的切线方程为:,联立直线方程和抛物线方程,得到关于一元二次方程,根据,求得,,进而求得切点,坐标,根据两点间距离公式求得,根据点到直线距离公式求得点到切线的距离,进而求得的面积.【详解】(1),,解得,抛物线的方程为.(2)由题意可知,、的斜率都存在,分别设为和,切点,,过点的抛物线的切线:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,,,,,切线的方程为,点到切线的距离为,,即的面积为.【点睛】本题主要考查了求抛物线方程和抛物线中三角形面积问题,解题关键是掌握抛物线定义和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式21、(1)289200元;(2)能够获批;(3)应选择等额本金还款方式【解析】

(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,即可由等差数列的前n项和公式求得其还款总额,减去本金即为还款的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论