江苏专用2025版高考物理一轮复习第10章电磁感应第4节电磁感应中动力学动量和能量问题学案_第1页
江苏专用2025版高考物理一轮复习第10章电磁感应第4节电磁感应中动力学动量和能量问题学案_第2页
江苏专用2025版高考物理一轮复习第10章电磁感应第4节电磁感应中动力学动量和能量问题学案_第3页
江苏专用2025版高考物理一轮复习第10章电磁感应第4节电磁感应中动力学动量和能量问题学案_第4页
江苏专用2025版高考物理一轮复习第10章电磁感应第4节电磁感应中动力学动量和能量问题学案_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE14-第4节电磁感应中动力学、动量和能量问题电磁感应中的动力学问题eq\o([讲典例示法])1.两种状态及处理方法状态特征处理方法平衡态加速度为零依据平衡条件列式分析非平衡态加速度不为零依据牛顿其次定律进行动态分析或结合功能关系进行分析2.力学对象和电学对象的相互关系[典例示法](2024·全国卷Ⅱ)如图所示,水平面(纸面)内间距为l的平行金属导轨间接一电阻,质量为m、长度为l的金属杆置于导轨上。t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由静止起先运动。t0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面对里的匀强磁场区域,且在磁场中恰好能保持匀速运动。杆与导轨的电阻均忽视不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ。重力加速度大小为g。求:(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值。思路点拨:分别画出金属杆进入磁场前、后的受力示意图,有助于快速精确的求解问题。甲乙[解析](1)设金属杆进入磁场前的加速度大小为a,由牛顿其次定律得F-μmg=ma ①设金属杆到达磁场左边界时的速度为v,由运动学公式有v=at0 ②当金属杆以速度v在磁场中运动时,由法拉第电磁感应定律得杆中的电动势为E=Blv ③联立①②③式可得E=Blt0eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(F,m)-μg))。 ④(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I,依据欧姆定律I=eq\f(E,R) ⑤式中R为电阻的阻值。金属杆所受的安培力为f=BlI ⑥因金属杆做匀速运动,由牛顿运动定律得F-μmg-f=0 ⑦联立④⑤⑥⑦式得R=eq\f(B2l2t0,m)。 ⑧[答案](1)Blt0eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(F,m)-μg))(2)eq\f(B2l2t0,m)用“四步法”分析电磁感应中的动力学问题[跟进训练]电磁感应中的平衡问题1.(2024·全国卷Ⅰ)如图所示,两固定的绝缘斜面倾角均为θ,上沿相连。两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不行伸长的松软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平。右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面对上。已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g。已知金属棒ab匀速下滑。求:(1)作用在金属棒ab上的安培力的大小;(2)金属棒运动速度的大小。[解析](1)设导线的张力的大小为T,右斜面对ab棒的支持力的大小为N1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力大小为N2。对于ab棒,由力的平衡条件得2mgsinθ=μN1+T+F ①N1=2mgcosθ ②对于cd棒,同理有mgsinθ+μN2=T ③N2=mgcosθ ④联立①②③④式得F=mg(sinθ-3μcosθ)。 ⑤(2)由安培力公式得F=BIL ⑥这里I是回路abdca中的感应电流。ab棒上的感应电动势为ε=BLv ⑦式中,v是ab棒下滑速度的大小。由欧姆定律得I=eq\f(ε,R) ⑧联立⑤⑥⑦⑧式得v=(sinθ-3μcosθ)eq\f(mgR,B2L2)。 ⑨[答案](1)mg(sinθ-3μcosθ)(2)(sinθ-3μcosθ)eq\f(mgR,B2L2)电磁感应中动力学问题2.(2024·江苏高考)如图所示,两条平行的光滑金属导轨所在平面与水平面的夹角为θ,间距为d。导轨处于匀强磁场中,磁感应强度大小为B,方向与导轨平面垂直。质量为m的金属棒被固定在导轨上,距底端的距离为s,导轨与外接电源相连,使金属棒通有电流。金属棒被松开后,以加速度a沿导轨匀加速下滑,金属棒中的电流始终保持恒定,重力加速度为g。求下滑究竟端的过程中,金属棒:(1)末速度的大小v;(2)通过的电流大小I;(3)通过的电荷量Q。[解析](1)金属棒做匀加速直线运动,依据运动学公式有v2=2as解得v=eq\r(2as)。(2)金属棒所受安培力F安=IdB金属棒所受合力F=mgsinθ-F安依据牛顿其次定律有F=ma解得I=eq\f(mgsinθ-a,dB)。(3)金属棒的运动时间t=eq\f(v,a),通过的电荷量Q=It解得Q=eq\f(mgsinθ-a\r(2as),dBa)。[答案](1)eq\r(2as)(2)eq\f(mgsinθ-a,dB)(3)eq\f(mgsinθ-a\r(2as),dBa)3.(2024·重庆市模拟)如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1m,两导轨M、P之间接入电阻R=0.2Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面对下的磁场Ⅰ,磁感应强度B0=1T,磁场的宽度x1=1m;在cd连线以下区域有一个方向也垂直于导轨平面对下的磁场Ⅱ,磁感应强度B1=0.5T。一个质量为m=1kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8m。求:(g取10m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。[解析](1)金属棒进入磁场Ⅰ做匀速运动,设速度为v0,由平衡条件得mgsinθ=F安 ①而F安=B0I0L, ②I0=eq\f(B0Lv0,R+r) ③代入数据解得v0=2m/s。 ④(2)金属棒滑过cd位置时,其受力如图所示。由牛顿其次定律得mgsinθ-F安′=ma, ⑤而F安′=B1I1L, ⑥I1=eq\f(B1Lv0,R+r), ⑦代入数据可解得a=3.75m/s2。 ⑧(3)金属棒在进入磁场Ⅱ区域达到稳定状态时,设速度为v1,则mgsinθ=F安″, ⑨而F安″=B1I2L ⑩I2=eq\f(B1Lv1,R+r), ⑪代入数据解得v1=8m/s。[答案](1)2m/s(2)3.75m/s2(3)8m/s电磁感应中的能量问题eq\o([讲典例示法])1.电磁感应中的能量转化2.求解焦耳热Q的三种方法3.求解电磁感应现象中能量问题的一般步骤(1)在电磁感应中,切割磁感线的导体或磁通量发生改变的回路将产生感应电动势,该导体或回路就相当于电源。(2)分析清晰有哪些力做功,就可以知道有哪些形式的能量发生了相互转化。(3)依据能量守恒列方程求解。[典例示法]小明设计的电磁健身器的简扮装置如图所示,两根平行金属导轨相距l=0.50m,倾角θ=53°,导轨上端串接一个R=0.05Ω的电阻。在导轨间长d=0.56m的区域内,存在方向垂直导轨平面对下的匀强磁场,磁感应强度B=2.0T。质量m=4.0kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连。CD棒的初始位置与磁场区域的下边界相距x=0.24m。一位健身者用恒力F=80N拉动GH杆,CD棒由静止起先运动,上升过程中CD棒始终保持与导轨垂直。当CD棒到达磁场上边界时健身者松手,触发复原装置使CD棒回到初始位置(重力加速度g=10m/s2,sin53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量)。求:(1)CD棒进入磁场时速度v的大小;(2)CD棒进入磁场时所受的安培力FA的大小;(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q。[解析](1)由牛顿其次定律a=eq\f(F-mgsinθ,m)=12m/s2 ①进入磁场时的速度v=eq\r(2ax)=2.4m/s。 ②(2)感应电动势E=Blv ③感应电流I=eq\f(Blv,R) ④安培力FA=IBl ⑤代入得FA=eq\f(Bl2v,R)=48N。 ⑥(3)健身者做功W=F(x+d)=64J ⑦由F-mgsinθ-FA=0 ⑧知CD棒在磁场区域做匀速运动在磁场中运动时间为t=eq\f(d,v) ⑨焦耳热Q=I2Rt=26.88J。 ⑩[答案](1)2.4m/s(2)48N(3)64J26.88J[跟进训练]功能关系在电磁感应中的应用1.(2024·江苏高考改编)如图所示,竖直放置的“”形光滑导轨宽为L,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d,磁感应强度为B。质量为m的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等。金属杆在导轨间的电阻为R,与导轨接触良好,其余电阻不计,重力加速度为g。金属杆()A.刚进入磁场Ⅰ时加速度方向竖直向下B.穿过磁场Ⅰ的时间小于在两磁场之间的运动时间C.穿过两磁场产生的总热量为4mgdD.释放时距磁场Ⅰ上边界的高度h可能小于eq\f(m2gR2,2B4L4)C[依据题述,由金属杆进入磁场Ⅰ和进入磁场Ⅱ时速度相等可知,金属杆在磁场Ⅰ中做减速运动,所以金属杆刚进入磁场Ⅰ时加速度方向竖直向上,选项A错误;由于金属杆进入磁场Ⅰ后做加速度渐渐减小的减速运动,而在两磁场之间做匀加速运动,所以穿过磁场Ⅰ的时间大于在两磁场之间的运动时间,选项B错误;依据能量守恒定律,金属杆从刚进入磁场Ⅰ到刚进入磁场Ⅱ过程动能改变量为0,重力做功为2mgd,则金属杆穿过磁场Ⅰ产生的热量Q1=2mgd,而金属杆在两磁场区域的运动状况相同,产生的热量相等,所以金属杆穿过两磁场产生的总热量为Q2=2×2mgd=4mgd,选项C正确;金属杆刚进入磁场Ⅰ时的速度v=eq\r(2gh),进入磁场Ⅰ时产生的感应电动势E=BLv,感应电流I=eq\f(E,R),所受安培力F=BIL,由于金属杆刚进入磁场Ⅰ时加速度方向竖直向上,所以安培力大于重力,即F>mg,联立解得h>eq\f(m2gR2,2B4L4),选项D错误。]2.如图所示,凸字形硬质金属线框质量为m,相邻各边相互垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l。匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面。起先时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动,在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动。线框完全穿过磁场过程中产生的热量为Q。线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g;求:(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的几倍;(2)磁场上下边界间的距离H。[解析](1)设磁场的磁感应强度大小为B,cd边刚进入磁场时,线框做匀速运动的速度为v1,cd边上的感应电动势为E1,由法拉第电磁感应定律可得E1=2Blv1设线框总电阻为R,此时线框中电流为I1,由闭合电路欧姆定律可得I1=eq\f(E1,R)设此时线框所受安培力为F1,有F1=2I1lB由于线框做匀速运动,故受力平衡,所以有mg=F1联立解得v1=eq\f(mgR,4B2l2)设ab边离开磁场之前,线框做匀速运动的速度为v2,同理可得v2=eq\f(mgR,B2l2),故可知v2=4v1。(2)线框自释放直到cd边进入磁场前,由机械能守恒定律可得2mgl=eq\f(1,2)mveq\o\al(2,1)线框完全穿过磁场的过程中,由能量守恒定律可得mg(2l+H)=eq\f(1,2)mveq\o\al(2,2)-eq\f(1,2)mveq\o\al(2,1)+Q联立解得:H=eq\f(Q,mg)+28l。[答案](1)4倍(2)eq\f(Q,mg)+28l电功率和焦耳热的计算3.(2024·南京三模)如图甲所示,导体框架abcd水平固定放置,ab平行于dc且bc边长L=0.20m,框架上有定值电阻R=9Ω(其余电阻不计),导体框处于磁感应强度大小B1=1.0T、方向水平向右的匀强磁场中。有一匝数n=300匝、面积S=0.01m2、电阻r=1Ω的线圈,通过导线和开关K与导体框架相连,线圈内充溢沿其轴线方向的匀强磁场,其磁感应强度B2随时间t改变的关系如图乙所示。B1与B2互不影响。甲乙(1)求0~0.10s线圈中的感应电动势大小E;(2)t=0.22s时刻闭合开关K,若bc边所受安培力方向竖直向上,推断bc边中电流的方向,并求此时其所受安培力的大小F;(3)从t=0时刻起闭合开关K,求0.25s内电阻R中产生的焦耳热Q。[解析](1)由法拉第电磁感应定律得E1=neq\f(ΔΦ,Δt)代入数据得E1=nSeq\f(ΔB2,Δt)=30V。(2)由左手定则得电流方向为b→c代入数据得E2=nSeq\f(ΔB2,Δt)=60V由闭合电路欧姆定律得I2=eq\f(E2,R+r)=6A安培力大小F=I2LB1=1.2N。(3)由法拉第电磁感应定律得I1=eq\f(E1,R+r)=3AQ=Ieq\o\al(2,1)Rt1+Ieq\o\al(2,2)Rt2=24.3J。[答案](1)30V(2)电流方向由b→c1.2N(3)24.3J4.(2024·江苏高考)如图所示,两条相距d的平行金属导轨位于同一水平面内,其右端接一阻值为R的电阻。质量为m的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ的磁感应强度大小为B、方向竖直向下。当该磁场区域以速度v0匀速地向右扫过金属杆后,金属杆的速度变为v。导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触。求:(1)MN刚扫过金属杆时,杆中感应电流的大小I;(2)MN刚扫过金属杆时,杆的加速度大小a;(3)PQ刚要离开金属杆时,感应电流的功率P。[解析](1)MN刚扫过金属杆时,金属杆的感应电动势E=Bdv0 ①回路的感应电流I=eq\f(E,R) ②由①②式解得I=eq\f(Bdv0,R)。 ③(2)金属杆所受的安培力F=BId ④由牛顿其次定律得,对金属杆F=ma ⑤由③④⑤式得a=eq\f(B2d2v0,mR)。 ⑥(3)金属杆切割磁感线的相对速度v′=v0-v ⑦感应电动势E=Bdv′ ⑧感应电流的电功率P=eq\f(E2,R) ⑨由⑦⑧⑨式得P=eq\f(B2d2v0-v2,R)。 ⑩[答案](1)eq\f(Bdv0,R)(2)eq\f(B2d2v0,mR)(3)eq\f(B2d2v0-v2,R)动量观点在电磁感应问题中的应用eq\o([讲典例示法])1.对于两导体棒在平直的光滑导轨上运动的状况,假如两棒所受的外力之和为零,则考虑应用动量守恒定律处理问题;2.由Beq\x\to(I)L·Δt=m·Δv、q=eq\x\to(I)·Δt可知,当题目中涉及电荷量或平均电流时,可应用动量定理来解决问题。[典例示法](2024·马鞍山二模)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上放置两根导体棒a和b,俯视图如图甲所示。两根导体棒的质量均为m,电阻均为R,回路中其余部分的电阻不计,在整个导轨平面内,有磁感应强度大小为B的竖直向上的匀强磁场。导体棒与导轨始终垂干脆触良好且均可沿导轨无摩擦地滑行,起先时,两棒均静止,间距为x0,现给导体棒a一水平向右的初速度v0,并起先计时,可得到如图乙所示的Δv­t图象(Δv表示两棒的相对速度,即Δv=va-vb)甲乙(1)试证明:在0~t2时间内,回路产生的焦耳热Q与磁感应强度B无关。(2)求t1时刻棒b的加速度大小。(3)求t2时刻两棒之间的距离。[解析](1)t2时刻起先,两棒速度相等,由动量守恒定律有2mv=mv0由能量守恒定律有Q=eq\f(1,2)mveq\o\al(2,0)-eq\f(1,2)(2m)v2解得Q=eq\f(1,4)mveq\o\al(2,0)所以在0~t2时间内,回路产生的焦耳热Q与磁感应强度B无关。(2)t1时刻有va-vb=eq\f(v0,2)回路中的电流I=eq\f(E,2R)=eq\f(BLva-BLvb,2R)此时棒b所受的安培力F=BIL由牛顿其次定律得棒b的加速度大小a1=eq\f(F,m)=eq\f(B2L2v0,4mR)。(3)t2时刻,两棒速度相同,均为v=eq\f(v0,2)0~t2时间内,对棒b,由动量定理有Beq\x\to(I)L·Δt=mv-0依据法拉第电磁感应定律有eq\x\to(E)=eq\f(ΔΦ,Δt)依据闭合电路欧姆定律有eq\x\to(I)=eq\f(\x\to(E),2R)而ΔΦ=BΔS=BL(x-x0)解得t2时刻两棒之间的距离x=x0+eq\f(mv0R,B2L2)。[答案](1)见解析(2)eq\f(B2L2v0,4mR)(3)x0+eq\f(mv0R,B2L2)两金属杆在平直的光滑导轨上运动,只受到安培力作用,这类问题可以从以下三个观点来分析:(1)力学观点:通常状况下一个金属杆做加速度渐渐减小的加速运动,而另一个金属杆做加速度渐渐减小的减速运动,最终两金属杆以共同的速度匀速运动;(2)能量观点:其中一个金属杆动能的削减量等于另一个金属杆动能的增加量与回路中产生的焦耳热之和;(3)动量观点:假如光滑导轨间距恒定,则两个金属杆的安培力大小相等,通常状况下系统的动量守恒。[跟进训练]动量定理在电磁感应现象中的应用1.两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d=1m,在左端弧形轨道部分高h=1.25m处放置一金属杆a,弧形轨道与平直轨道的连接处光滑无摩擦,在平直轨道右端放置另一金属杆b,杆a、b的电阻分别为Ra=2Ω、Rb=5Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B=2T。现杆b以初速度大小v0=5m/s起先向左滑动,同时由静止释放杆a,杆a由静止滑到水平轨道的过程中,通过杆b的平均电流为0.3A;从a下滑到水平轨道时起先计时,a、b运动的速度—时间图象如图乙所示(以a运动方向为正方向),其中ma=2kg,mb=1kg,g取10m/s2,求:甲乙(1)杆a在弧形轨道上运动的时间;(2)杆a在水平轨道上运动过程中通过其截面的电荷量;(3)在整个运动过程中杆b产生的焦耳热。[解析](1)设杆a由静止滑至弧形轨道与平直轨道连接处时杆b的速度大小为vb0,对杆b运用动量定理,有Bdeq\x\to(I)·Δt=mb(v0-vb0)其中vb0=2m/s代入数据解得Δt=5s。(2)对杆a由静止下滑到平直导轨上的过程中,由机械能守恒定律有magh=eq\f(1,2)maveq\o\al(2,a)解得va=eq\r(2gh)=5m/s设最终a、b两杆共同的速度为v′,由动量守恒定律得mava-mbvb0=(ma+mb)v′代入数据解得v′=eq\f(8,3)m/s杆a动量的改变量等于它所受安培力的冲量,设杆a的速度从va到v′的运动时间为Δt′,则由动量定理可得BdI·Δt′=ma(va-v′)而q=I·Δt′代入数据得q=eq\f(7,3)C。(3)由能量守恒定律可知杆a、b中产生的焦耳热为Q=magh+eq\f(1,2)mbveq\o\al(2,0)-eq\f(1,2)(mb+ma)v′2=eq\f(161,6)Jb棒中产生的焦耳热为Q′=eq\f(5,2+5)Q=eq\f(115,6)J。[答案](1)5s(2)eq\f(7,3)C(3)eq\f(115,6)J动量守恒定律在电磁感应中的应用2.如图所示,在水平面内固定有两根相互平行的无限长光滑金属导轨,其间距为L,电阻不计。在虚线l1的左侧存在竖直向上的匀强磁场,在虚线l2的右侧存在竖直向下的匀强磁场,两部分磁场的磁感应强度大小均为B。ad、bc两根电阻均为R的金属棒与导轨垂直,分别位于两磁场中,现突然给ad棒一个水平向左的初速度v0,在两棒达到稳定的过程中,下列说法正确的是()A.两金属棒组成的系统的动量守恒B.两金属棒组成的系统的动量不守恒C.ad棒克服安培力做功的功率等于ad棒的发热功率D.ad棒克服安培力做功的功率等于安培力对bc棒做功的功率与bc棒发热功率之和B[起先时,ad棒以初速度v0切割磁感线,产生感应电动势,在回路中产生顺时针方向(俯视)的感应电流,ad棒因受到向右的安培力而减速,bc棒受到向右的安培力而向右加速;当两棒的速度大小相等,即两棒因切割磁感线而产生的感应电动势相等时,回路中没有感应电流,两棒各自做匀速直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论