高等数学课件 15-2 线性规划问题的数学模型_第1页
高等数学课件 15-2 线性规划问题的数学模型_第2页
高等数学课件 15-2 线性规划问题的数学模型_第3页
高等数学课件 15-2 线性规划问题的数学模型_第4页
高等数学课件 15-2 线性规划问题的数学模型_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

15-2线性规划问题的数学模型1.规划问题生产和经营管理中经常提出如何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是规划问题。线性规划通常解决下列两类问题:(1)当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原标材料、人工、时间等)去完成确定的任务或目标(2)在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多、利润最大.)例1.1如图所示,如何截取x使铁皮所围成的容积最大?xa例1.2某厂生产两种产品,下表给出了单位产品所需资源及单位产品利润问:应如何安排生产计划,才能使总利润最大?解:1.决策变量:设产品I、II的产量分别为x1、x22.目标函数:设总利润为z,则有:

maxz=2x1+x23.约束条件:

5x2≤156x1+2x2≤24x1+x2≤5

x1,x2≥0例1.3已知资料如下表所示,问如何安排生产才能使利润最大?或如何考虑利润大,产品好销。

设备产品AB

C

D利润(元)

Ⅰ21402

Ⅱ22043

有效台时1281612解:1.决策变量:设产品I、II的产量分别为x1、x22.目标函数:设总利润为z,则有:maxz=2x1+x23.约束条件:

x1≥0,x2≥0

2x1+2x2≤12x1+2x2≤84x1≤164x2≤12例1.4

某厂生产三种药物,这些药物可以从四种不同的原料中提取。下表给出了单位原料可提取的药物量解:要求:生产A种药物至少160单位;B种药物恰好200单位,C种药物不超过180单位,且使原料总成本最小。1.决策变量:设四种原料的使用量分别为:x1、x2、x3

、x42.目标函数:设总成本为zmin

z=5x1+6x2+7x3+8x43.约束条件:

x1+2x2+x3+x4≥1602x1+4x3+2x4

=2003x1

+x2+x3+2x4

≤180

x1、x2

、x3

、x4≥0

例1.5

某航运局现有船只种类、数量以及计划期内各条航线的货运量、货运成本如下表所示:航线号船队类型编队形式货运成本(千元/队)货运量(千吨)拖轮A型驳船B型驳船1112—362521—4362023224724041—42720船只种类船只数拖轮30A型驳船34B型驳船52航线号合同货运量12002400问:应如何编队,才能既完成合同任务,又使总货运成本为最小?线性规划问题的数学模型

解:设:xj为第j号类型船队的队数(j=1,2,3,4),

z为总货运成本则:

minz=36x1+36x2+72x3+27x4

x1+x2+2x3+x4≤302x1+2x3≤344x2+4x3+4x4≤5225x1+20x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论