




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版九年级上册数学期中考试试题一、选择题。(每小题只有一个正确答案)1.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.菱形 C.直角梯形 D.等边三角形2.抛物线y=﹣x2+3x﹣的对称轴是直线()A.x=3 B.x= C.x=﹣ D.x=﹣3.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±4.如图,将△ABC绕顶点C旋转得到△A′B′C,且点B刚好落在A′B′上.若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.40° B.35° C.30° D.45°5.在⊙O中,弦AB的长为8,圆心O到AB的距离为3,若OP=4,则点P与⊙O的位置关系是()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.P与A或B重合6.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣37.如图,在⊙O中,圆心角∠AOB=120°,P为弧AB上一点,则∠APB度数是()A.100° B.110° C.120° D.130°8.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路上处距点米.如果火车行驶时,周围米以内会受到噪音的影响.那么火车在铁路上沿方向以千米/时的速度行驶时,处受噪音影响的时间为()A.秒 B.秒 C.秒 D.秒9.在平面直角坐标系xOy中,抛物线y=﹣x2+4x﹣3与x轴交于点A,B(点A在点B的左侧),与y轴交于点C.垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),若x1<x2<x3,记s=x1+x2+x3,则s的取值范围为()A.5<s<6 B.6<s<7 C.7<s<8 D.8<s<910.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为()A.3 B.1+ C.1+3 D.1+二、填空题11.抛物线y=2(x+1)2的顶点坐标为_____.12.已知点A(a,1)与点A′(5,b)是关于原点对称,则a+b=________.13.有两个人患了流感,经过两轮传染后总共有162人患了流感,每轮传染中平均一个人传染了_____个人.14.若函数y=(k﹣3)x2+2x+1与坐标轴至少有两个不同的交点,则k的取值范围为_____.15.⊙O的直径为2,AB,AC为⊙O的两条弦,AB=,AC=,则∠BAC=_____.16.已知函数y=|x2+x﹣t|,其中x为自变量,当﹣1≤x≤2时,函数有最大值为4,则t的值为_____.三、解答题17.解方程:x2+4x-3=0.18.如图,在⊙O中,AD=BC,求证:DC=AB.19.已知二次函数y=ax2+bx+c,如表给出了y与x的部分对应值:x…﹣10123…y=ax2+bx+c…n30﹣5﹣12…(1)根据表格中的数据,试确定二次函数的解析式和n的值;(2)抛物线y=ax2+bx+c与直线y=2x+m没有交点,求m的取值范围.20.在平面直角坐标系中,已知A(2,0)、B(3,1)、C(1,3).(1)画出△ABC沿x轴负方向平移2个单位后得到的△A1B1C1,并写出B1的坐标;(2)以A1点为旋转中心,将△A1B1C1逆时针方向旋转90°得△A1B2C2,画出△A1B2C2,并写出C2的坐标;(3)直接写出过B、B1、C2三点的圆的圆心坐标为.21.我市东湖高新技术开发区某科技公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价不低于100元,但不超过200元.设销售单价为x(元),年销售量为y(万件),年获利为w(万元)该产品年销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)直接写出y与x之间的函数关系式,并写出x的取值范围;(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?并求当盈利最大或亏损最小时的产品售价;(3)在(2)的条件下.即在盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利不低于1370万元?若能,求出第二年的售价在什么范围内;若不能,请说明理由.22.如图AB为⊙O的直径,C为⊙O上半圆的一个动点,CE⊥AB于点E,∠OCE的角平分线交⊙O于D点.(1)当C点在⊙O上半圆移动时,D点位置会变吗?请说明理由;(2)若⊙O的半径为5,弦AC的长为6,连接AD,求线段AD、CD的长.23.如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°.(1)连接DB,求证:∠DBF=∠ABE;(2)求图中阴影部分的面积.24.在△ABC和△ADE中,AB=AC,∠BAC=120°,∠ADE=90°,∠DAE=60°,F为BC中点,连接BE、DF,G、H分别为BE,DF的中点,连接GH.(1)如图1,若D在△ABC的边AB上时,请直接写出线段GH与HF的位置关系,=.(2)如图2,将图1中的△ADE绕A点逆时针旋转至图2所示位置,其它条件不变,(1)中结论是否改变?请说明理由;(3)如图3,将图1中的△ADE绕A点顺时针旋转至图3所示位置,若C、D、E三点共线,且AE=2,AC=,请直接写出线段BE的长.25.抛物线y=x2+(2t﹣2)x+t2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;(3)如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.参考答案1.D【分析】根据轴对称图形和中心对称图形定义和性质即可进行判断.【详解】解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;B、菱形是轴对称图形,也是中心对称图形.故本选项错误;C、直角梯形不是轴对称图形,也不是中心对称图形.故本选项错误;D、等边三角形是轴对称图形,不是中心对称图形.故本选项正确.故选D.【点睛】本题考查对称图形和中心对称图形定义和性质,解题关键是掌握定义、性质,能找出对称轴和对称中心.2.B【分析】根据配方法,或者顶点坐标公式,可直接求对称轴.【详解】解:抛物线y=-x2+3x-对称轴是直线x=-=,
故选B.解:抛物线y=﹣x2+3x﹣的对称轴是直线x=-=,
故选B.【点睛】此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标(h,k),对称轴是x=h.3.C【解析】x2+6x+4=0,移项,得x2+6x=-4,配方,得x2+6x+32=-4+32,即(x+3)2=5.故选C.4.A【分析】首先根据旋转的性质以及三角形外角的性质得出∠BCA'+∠A'=∠B'BC=45°+25°=70°,以及∠BB'C=∠B'BC=70°,再利用三角形内角和定理得出∠ACA'=∠A'BA=40°.【详解】∵∠A=25°,∠BCA'=45°,∴∠BCA'+∠A'=∠B'BC=45°+25°=70°,∵CB=CB',∴∠BB'C=∠B'BC=70°,∴∠B'CB=40°,∴∠ACA'=40°,∵∠A=∠A',∠A'DB=∠ADC,∴∠ACA'=∠A'BA=40°.故选A.【点睛】此题考查旋转的性质,解题关键在于得出∠BCA'+∠A'=∠B'BC=45°+25°=70°5.A【分析】连结OA,如图,先根据垂径定理得到AC=AB=4,然后在Rt△OAC中,根据勾股定理计算出OA即可判断.【详解】解:连结OA,如图,∵OC⊥AB,∴AC=BC=AB=4,在Rt△OAC中,∵OC=3,AC=4,∴OA==5,∴⊙O的半径为5cm,∵OP=4<OA,∴点P在⊙O内.故选A.【点睛】此题考查点与圆的位置关系,垂径定理、勾股定理;解题关键熟练掌握垂径定理,由勾股定理求出OA.6.A【详解】【分析】根据平移的规律即可得到平移后函数解析式.【详解】抛物线y=2(x-4)2-1先向左平移4个单位长度,得到的抛物线解析式为y=2(x-4+4)2-1,即y=2x2-1,再向上平移2个单位长度得到的抛物线解析式为y=2x2-1+2,即y=2x2+1;故选A【点睛】本题考查的是二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.7.C【解析】试题解析:在优弧AB上取点C,连接AC、BC,由圆周角定理得,由圆内接四边形的性质得到,故选C.点睛:在同圆或等圆中,同弧所对的圆周角等于圆心角的一半.8.B【分析】首先过点A作AD⊥MN,求出最短距离AD的长度,然后在MN上去点E、F,是AE=AF=200,求出DE的长度,根据DF=DE得出EF的长度,然后计算出时间.【详解】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,
∴AC=120米,
当火车到B点时对A处产生噪音影响,此时AB=200米,
∵AB=200米,AC=120米,
∴由勾股定理得:BC=160米,CD=160米,即BD=320米,
∵72千米/小时=20米/秒,
∴影响时间应是:320÷20=16秒.
故选B.9.C【分析】(1)利用抛物线解析式求得点B、C的坐标,利用待定系数法求得直线BC的表达式即可;
(2)由抛物线解析式得到对称轴和顶点坐标,结合图形解答.【详解】解:当y=0时,﹣x2+4x﹣3=0,解得x1=1,x2=3,则A(1,0),B(3,0),当x=0时,y=﹣x2+4x﹣3=﹣3,则C(0,﹣3),∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴抛物线的顶点坐标为(2,1),易得直线BC的解析式为y=x﹣3,∵x1<x2<x3,∴0<y1=y2=y3≤1,当y3=1时,x﹣3=1,解得x=4,∴3<x3<4,∵点P和点Q为抛物线上的对称点,∴x2﹣2=2﹣x1,∴x1+x2=4,∴s=4+x3,∴7<s<8.故选C.【点睛】本题考查抛物线与x轴的交点,解答关键是根据图像,找出符合要求部分,从而判定结果.10.D【分析】如图,连接OQ,作CH⊥AB于H.首先证明点Q的运动轨迹为以AO为直径的⊙K,连接CK,当点Q在CK的延长线上时,CQ的值最大,利用勾股定理求出CK即可解决问题.【详解】解:如图,连接OQ,作CH⊥AB于H.∵AQ=QP,∴OQ⊥PA,∴∠AQO=90°,∴点Q的运动轨迹为以AO为直径的⊙K,连接CK,当点Q在CK的延长线上时,CQ的值最大,在Rt△OCH中,∵∠COH=60°,OC=2,∴OH=OC=1,CH=,在Rt△CKH中,CK==,∴CQ的最大值为1+,故选D.【点睛】本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点Q的运动轨迹,学会构造辅助圆解决问题,属于中考填空题中的压轴题.11.(﹣1,0).【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=2(x+1)2,根据顶点式的坐标特点可知,顶点坐标为(﹣1,0),故答案为(﹣1,0).【点睛】本题考查将解析式化为顶点式y=a(x-h)2+k,解题关键是:顶点式y=a(x-h)2+k的顶点坐标是(h,k),对称轴是x=h.12.-6【详解】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-6,故答案为-6.13.8.【分析】设每轮传染中平均每人传染x个人,根据经过两轮传染后总共有162人患了流感,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设每轮传染中平均每人传染x个人,根据题意得:2+2x+x(2+2x)=162,整理得:x2+2x﹣80=0,解得:x1=8,x2=﹣10(不合题意,舍去).故答案为8.【点睛】本题考查一元二次方程的应用,解题关键找准等量关系,正确列出一元二次方程.14.k≤4.【分析】由解析式知函数图象与y轴有一交点(0,1),依据题意知函数图象与x轴还至少有一个交点,再分函数是一次函数和二次函数两种情况分别求解可得.【详解】解:当x=0时,y=1,∴此函数图象与y轴必有一个交点(0,1);①若此函数是一次函数,即k=3,其解析式为y=2x+1,其函数图象与坐标轴有两个交点;②若此函数是二次函数,即k≠3,由题意知4﹣4(k﹣3)≥0,解得k≤4;综上,k的取值范围是k≤4,故答案为k≤4.【点睛】本题考查了抛物线与函数的关系,利用一元二次方程的判别式来判断抛物线与坐标轴的交点个数,做题时要认真分析,找到它们的关系.15.15°或75°.【分析】根据题意点C的位置有两种情况,如图1,∠BAC=∠CAO+∠OAB;如图2,∠BAC=∠OAB-∠OAC,进而得出答案.【详解】解:如图1,连接OC,OA,OB,过点O作OE⊥AC于点E,∵OA=OB=1,AB=,12+12=()2,∴∠AOB=90°,∴△OAB是等腰直角三角形,∠OAB=45°,∵AC=,OE⊥AC,∴AE=,∴cos∠EAO=,∴∠EAO=30°,∴如图1时,∠BAC=∠CAO+∠OAB=30°+45°=75°;如图2时,∠BAC=∠BAC=∠OAB﹣∠OAC.=45°﹣30°=15°.故答案为15°或75°.【点睛】此题主要考查了垂径定理以及勾股定理逆定理,利用分类讨论得出是解题关键.16.t=或2.【分析】画出二次函数图象,确定函数取得最大值时x的值,即可求解.【详解】解:函数的图象如下图所示:从图象看,当﹣1≤x≤2时,函数可能在对称轴位置或x=2时,取得最大值解:函数y=|x2+x﹣t|=4,∴当x=﹣时或x=2时,|x2+x﹣t|=4,解得:t=或2.【点睛】本题考查了二次函数的图象与性质,通过图象找出函数取得最值的位置是解题的关键.17.,【分析】公式法或配方法求解可得.【详解】解:原式可化为x2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x1=﹣2+;x2=﹣2﹣.【点睛】本题考查一元二次方程的解法,解题关键是掌握解一元二次方程的方法.18.详见解析.【分析】根据在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,由AD=BC得到,把两弧都加上弧AC得到,于是得到DC=AB.【详解】证明:∵AD=BC,∴,∴,即,∴DC=AB.【点睛】本题考查圆心角、弧、弦的关系:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.19.(1)y=﹣x2﹣2x+3,4;(2)m>7.【分析】(1)利用待定系数法求抛物线解析式,然后计算自变量为-1时对应的函数值得到n的值;
(2)根据题意方程-x2-2x+3=2x+m没有实数解,然后利用判别式的意义得到42-4(m-3)<0,从而解不等式即可得到m的取值范围.【详解】解:(1)把(0,3)、(1,0)、(2,﹣5)代入y=ax2+bx+c得,解得∴二次函数的解析式为:y=﹣x2﹣2x+3,把(﹣1,n)代入得n=﹣1+2+3=4;(2)∵﹣x2﹣2x+3=2x+m∴x2+4x+m﹣3=0∵抛物线y=ax2+bx+c与直线y=2x+m没有交点∴△=42﹣4(m﹣3)<0,∴m>7.【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.(1)(1,1);(2)(﹣3,﹣1);(3)(2,﹣6).【分析】(1)根据平移变换的定义和性质作图可得;
(2)根据旋转变换的定义和性质作图可得;
(3)作B1C2和BB1的中垂线,交点即为所求点.【详解】解:(1)如图所示,△A1B1C1即为所求,其中B1的坐标为(1,1),故答案为(1,1);(2)如图所示,△A1B2C2即为所求,其中C2的坐标为(﹣3,﹣1),故答案为(﹣3,﹣1).(3)如图所示,过B、B1、C2三点的圆的圆心P的坐标为(2,﹣6),故答案为(2,﹣6).【点睛】本题考查了旋转变换与平移变换作图,找出对应点的位置是作图的关键,对应点的连线的垂直平分线过旋转中心是找旋转中心常用的方法,需要熟练掌握.21.(1)y=﹣x+30(100≤x≤200);(2)x=170,w最大值=1690<1520+480=2000,第一年公司亏损,最少亏损是310万元,此时售价为170元;(3)当两年共盈利不低于1370万元时,160≤x≤180.【分析】(1)利用待定系数法求解可得;
(2)根据“年获利=(售价-成本价)×销售量”列出函数解析式,配方成顶点式得出其获利最大值,与前期总投入480+1520比较可得;
(3)根据“年获利=1370+前期最少亏损钱数”求得x的值,从而得出答案.【详解】解:(1)设y=kx+b,将(100,20)和(200,10)代入,得:,解得:,∴y=﹣x+30(100≤x≤200);(2)w=(﹣x+30)(x﹣40)=﹣x2+34x﹣1200=﹣(x﹣170)2+1690,∵﹣<0,∴x=170,w最大值=1690<1520+480=2000,第一年公司亏损,最少亏损是310万元,此时售价为170元;(3)当﹣x2+34x﹣1200=1370+310=1680时,解得:x1=160,x2=180,结合图象当两年共盈利不低于1370万元时,160≤x≤180.【点睛】本题考查二次函数的应用与一元二次方程的应用,解题关键是理解题意,找到题目蕴含的相等关系,并依据相等关系得到一元二次方程和二次函数解析式.22.(1)当C点在⊙O上半圆移动时,D点位置不会变;理由见解析;(2)线段AD的长度为5,线段CD的长度为7.【分析】(1)连接OD.根据角平分线的性质得到∠1=∠3,根据原点半径相等得到OC=OD,根据等边对等角得到∠1=∠2,等量代换得到∠2=∠3,即可判定CE∥OD,又CE⊥AB,则OD⊥AB,根据垂径定理可知点D为半圆AB的中点.(2)在直角△AOD中,OA=OD=5,根据勾股定理即可求出过点A作CD的垂线,垂足为G,根据圆周角定理得到即可求出在直角△AGD中,即可求出CD的长.【详解】(1)当C点在⊙O上半圆移动时,D点位置不会变;理由如下:连接OD.∵CD平分∠OCE,∴∠1=∠3,而OC=OD,∴∠1=∠2,∴∠2=∠3,∴CE∥OD,∵CE⊥AB,∴OD⊥AB,∴=,即点D为半圆AB的中点.(2)∵在直角△AOD中,OA=OD=5,∴过点A作CD的垂线,垂足为G,∵∴△AGC是等腰直角三角形,∵AC=6,∴在直角△AGD中,∴∴线段AD的长度为,线段CD的长度为.【点睛】考查角平分线的性质,平行线的判定与性质,勾股定理,圆周角定理等,对学生综合解决问题能力要求较高.23.(1)见解析;(2)阴影部分的面积为60π﹣9.【分析】(1)要证明∠DBF=∠ABE,需证∠EBF=ABD=60°,则∠ABE=∠DBF=60°﹣∠DBE,可得∠DBF=∠ABE;(2)过B作BQ⊥DC于Q,则∠BQC=90°,可证明△ABM≌△DBN,阴影部分的面积S=S扇形DBC﹣S△DBC==60π﹣9.【详解】(1)证明:∵四边形ABCD是菱形,∴AD=AB,AD∥BC,∵∠A=60°,∴∠ADB=∠DBC=180°﹣60°﹣60°=60°,即∠EBF=ABD=60°,∴∠ABE=∠DBF=60°﹣∠DBE,即∠DBF=∠ABE;(2)解:过B作BQ⊥DC于Q,则∠BQC=90°,∵四边形ABCD是菱形,∠A=60°,AB=6,∴DC∥AB,∠C=∠A=60°,BC=AB=6,∴∠ADC=120°,∴∠QBC=30°,∴CQ=BC=3,BQ=CQ=3,∵∠A=60°,∠CDB=120°﹣60°=60°,∴∠A=∠CDB,∵AB=BD,∴在△ABM和△DBN中∴△ABM≌△DBN(ASA),∴S△ABM=S△DBN,∴阴影部分的面积S=S扇形DBC﹣S△DBC==60π﹣9.【点睛】本题考查全等三角形的证明定理,通过构建全等三角形,可求出阴影部分的面积.24.(1)GH⊥HF,;(2)结论不变;(3).【分析】(1)如图1中,连接DG,FG.根据直角三角形斜边中线的性质,可得GD=GF,再证明△DGF是等边三角形即可解决问题;
(2)结论不变.如图2中,延长ED至S,使DS=DE,连接AS,BS,CE,FG,DG.理由三角形的中位线定理,证明GD=GF,△GDF是等边三角形即可解决问题;
(3)如图3中,延长ED到H,使得DH=DE,连接AH,BH,作BM⊥EC于M,设BC交AH于点O.想办法证明∠BHE=60°,解直角三角形求出BM,ME即可解决问题;【详解】解:(1)如图1中,连接DG,FG.∵AB=AC,BF=CF,∴AF⊥BC,∴∠BAF=∠CAF=60°,∵ED⊥AB,∴∠BFE=∠BDE=90°,∵BG=GE,∴DG=BE,GF=BE,∴DG=FG,∵DH=HF,∴GH⊥DF,∵∠BAE=60°,∴∠ABE+∠AEB=120°,∵DG=BG=GF=GE,∴∠GBD=∠GDB,∠GEF=∠GFE,∴∠BGD+∠EGF=120°,∴∠DGF=60°,∴△DGF是等边三角形,∴=tan60°=.故答案为GH⊥HF,=.(2)结论不变.理由:如图2中,延长ED至S,使DS=DE,连接AS,BS,CE,FG,DG.∵∠ADE=90°∴AS=AE,∠DAE=∠DAS=60°∴∠BAC=∠SAE=120°∴∠SAB=∠EAC∵AB=AC∴△ABS≌△ACE∴BS=CE,∠ABS=∠ACE∵F,G分别为BC,BE中点∴FG∥CE,FG=CE,同理:DG∥BS,DG=BS,∴DG=FG,∵H为DF中点,∴GH⊥HF,延长SB交CE延长线于T,∵∠ABS+∠ABT=∠ACE+∠ABT=180°,∴∠BAC+∠T=120°,∴∠T=60°,延长FG交BT于P,∴∠T=∠BPF=∠DGF=60°,∴∠HGF=30°,∴=.(3)如图3中,延长ED到H,使得DH=DE,连接AH,BH,作BM⊥EC于M,设BC交AH于点O.∵AD⊥EH,ED=DH,∴AE=AH,∴∠AEH=∠AHE=30°,∴∠EAH=∠BAC=120°,∴∠BAH=∠CAE,∵AB=AC,AH=AE,∴△BAH≌△CAE(SAS),∴∠BHA=∠AEC=30°,BH=CE,∴∠OBA=∠OHC=30°,∵∠AOB=∠COH,∴△AOB∽△COH,∴=,∴=,∵∠AOC=∠BOH,∴△AOC∽△BOH,∴∠BHO=∠AOC=30°,∴∠BHE=30°+30°=60°,在Rt△ADE中,∵AE=2,∠AED=30°,∴AD=1,ED=DH=,在Rt△ADC中,CD==,∴BH=EC=2,在Rt△BMH中,HM=(2+),BM=HM=(2+3),∴EM=EH﹣HM=2﹣(2+)=﹣1,在Rt△EBM中,BE===.故答案为.【点睛】本题属于几何变换综合题、考查了直角三角形斜边中线定理、三角形中位线定理、等腰三角形的性质和判定、解直角三角形、勾股定理、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题.25.(1)6.(2)(,﹣).(3)t=.【分析】(1)代入t=0可得出抛物线的解析式,利用二次函数图象上点的坐标特征可求出点A,B,C的坐标,再利用三角形的面积公式即可求出△ABC的面积;
(2)由点B,C的坐标可得出∠ABC=45°,利用三角形内角和定理可得出∠ACB+∠CAB=135°,结合∠PCB+∠CAB=135°可得出∠ACB=∠PCB,过B作BM∥y轴,交CP延长线于M,由平行线的性质可得出∠ABC=∠MBC,结合BC=BC即可证出△ABC≌△MBC(ASA),利用全等三角形的性质可得出AB=MB=4,进而可得出点M的坐标,根据点C,M的坐标,利用待定系数法可求出直线CM的解析式,再联立直线CM及抛物线的解析式成方程组,通过解方程组可求出点P的坐标;
(3)利用二次函数图象上点的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 62680-1-3:2024 EN-FR Universal serial bus interfaces for data and power - Part 1-3: Common components - USB Type-C?cable and connector specification
- 2025-2030年中国铝包木门窗行业运行现状及发展前景分析报告
- 2025-2030年中国金融资产交易所行业发展趋势规划研究报告
- 2025-2030年中国葡萄及深加工行业发展状况及营销战略研究报告
- 2025-2030年中国色纺纱市场运行动态及发展趋势预测报告
- 2025-2030年中国羊绒产业运行态势及投资战略研究报告
- 2025-2030年中国程控交换机行业发展现状及前景趋势分析报告
- 2025-2030年中国离心泵制造行业市场运营状况与发展潜力分析报告
- 2025辽宁省安全员C证考试(专职安全员)题库附答案
- 2025广东省安全员《C证》考试题库及答案
- 申论公务员考试试题与参考答案(2024年)
- 《幼儿行为观察与分析案例教程》教学教案
- 小学科学教育课程实施方案
- DB11T 1035-2013 城市轨道交通能源消耗评价方法
- 2024新能源光伏电站运行规程和检修规程
- 供应室课件大全
- 银行存管三方协议书
- 2024义务教育道德与法治课程标准(2022版)
- 2024年新人教版化学九年级上册全册课件(新版教材)
- 智能体脂秤市场洞察报告
- 教科版 二年级科学上册第一单元第6课《不同的季节》同步练习(附答案解析)
评论
0/150
提交评论