苏教版江苏省扬州市扬州中学教育集团树人学校2023-2024学年高一上学期期中数学试题_第1页
苏教版江苏省扬州市扬州中学教育集团树人学校2023-2024学年高一上学期期中数学试题_第2页
苏教版江苏省扬州市扬州中学教育集团树人学校2023-2024学年高一上学期期中数学试题_第3页
苏教版江苏省扬州市扬州中学教育集团树人学校2023-2024学年高一上学期期中数学试题_第4页
苏教版江苏省扬州市扬州中学教育集团树人学校2023-2024学年高一上学期期中数学试题_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷第=page11页,共=sectionpages33页试卷第=page11页,共=sectionpages33页江苏省扬州市扬州中学教育集团树人学校2023-2024学年高一上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合,,则(

).A. B. C. D.2.命题“,”的否定是(

)A., B.,C., D.,3.下列运算中计算结果正确的是(

)A. B. C. D.4.设,则“”是“”的(

)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.1935年美国物理学家、地震学家里克特,为了解决大尺度问题的压缩,设计了一种度量方式:里克特震级,简称里氏震级,后来经同行古登堡的改进和完善,得到了震级的计算公式,其中是被测地震的最大振幅,是标准地震的振幅,并通过研究得出了地震时释放出的能量(单位:焦耳)与地震里氏震级之间的关系,.请问9.0级地震释放的能量是3.0级地震的约多少倍?(

)A. B. C. D.6.已知函数是上的增函数,则的取值范围是(

)A. B.C. D.7.已知,均为正数,若,则的最小值为(

)A.3 B.4 C.5 D.68.已知函数,记集合,,若,则实数的取值范围为(

)A. B. C. D.二、多选题9.已知集合,,且,则实数的值可以为(

)A. B. C.0 D.110.已知函数,满足的的值有(

)A. B. C. D.11.下列不等式正确的有(

)A.当, B.当,C.)最小值等于4 D.函数最小值为.12.设函数的定义域为,为奇函数,为偶函数,当时,.若,则下列关于的说法正确的有(

)A.的一个周期为4 B.是函数的一条对称轴C.时, D.三、填空题13.已知幂函数的图象过点,则14.函数的定义域为.15.若关于x的不等式的解集为,则不等式的解集为.16.已知函数,若对任意的,且成立,则实数的取值范围是.四、解答题17.设全集为,,.(1)求;(2)若,,求实数的取值范围.18.求下列各式的值:(1)(2)19.已知,.(1)判断的奇偶性并证明;(2)用定义证明:函数在上是增函数.20.已知二次函数满足,且.(1)求的解析式;(2)若,解不等式.21.已知函数的值域为,若关于的不等式的解集为.(1)求实数的值;(2)若,,,求的最小值.22.俄国数学家切比雪夫(П.Л.Чебышев,1821-1894)是研究直线逼近函数理论的先驱.对定义在非空集合上的函数,以及函数,切比雪夫将函数,的最大值称为函数与的“偏差”.(1)若,,求函数与的“偏差”;(2)若,,求实数,使得函数与的“偏差”取得最小值,并求出“偏差”的最小值.答案第=page11页,共=sectionpages22页答案第=page11页,共=sectionpages22页参考答案:1.D2.C3.D4.A5.D6.D7.C8.B9.BCD10.AD11.AD12.ABD13.314.15.16.17.(1);(2).【详解】(1)全集为,,,,

(2),且,知,

由题意知,,解得,实数的取值范围是.18.(1)(2)1【详解】(1).(2).19.(1)奇函数,证明见解析(2)证明见解析【详解】(1)函数是定义域上的奇函数,理由如下,定义域关于原点对称,又,所以是定义域上的奇函数.(2)设为区间上的任意两个值,且,则,因为,所以,,即,,所以函数在上是增函数.20.(1)(2)答案见解析【详解】(1)由于是二次函数,可设,恒成立,恒成立,,又,,;(2)由可知:

(a>0),①=2时,即a=,原不等式即为:,所以;②<2时,即a>,原不等式解集为;③2<时,即0,原不等式解集为.21.(1)(2)【详解】(1)解:由题意,函数的值域为,可得,即,则不等式,即为的解集为,即和是方程为的两个实数根,所以,解得.(2)解:由(1)得,则,因为且,所以且,则,当且仅当时,即时,等号成立,所以的最小值为.22.(1);(2)时,函数与的“偏差”取得最小值为【详解】(1),因为,所以,则,所以函数与的“偏差”为.(2)令,,因为,所以,,当,即时,此时,则的“偏差”为,此时,当,即时,此时,则“偏差”为,此时,无最小值,当,,且,即时,则“偏差”为,此时,无最小值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论