奥本海姆信号与系统(第二版)课后答案(英文版、非扫描版)_第1页
奥本海姆信号与系统(第二版)课后答案(英文版、非扫描版)_第2页
奥本海姆信号与系统(第二版)课后答案(英文版、非扫描版)_第3页
奥本海姆信号与系统(第二版)课后答案(英文版、非扫描版)_第4页
奥本海姆信号与系统(第二版)课后答案(英文版、非扫描版)_第5页
已阅读5页,还剩180页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Signals&Systems

(SecondEdition)

—LearningInstructions

(Exercises

Answers)

DepartmentofComputerEngineering

2005.12

Contents

Chapter1,2

Chapter2-17

Chapter3-35

Chapter4-62

Chapter5,83

Chapter6-109

Chapter7-119

Chapter8,132

Ch叩ter9-140

Chapter1060

1

Chapter1Answers

1.1ConvertingfrompolartoCartesiancoordinates:

1/111-a_Icos^c4一1

—p——cos兀=———pi~-2

2e222e2

.n_产

eT=cos(_)+jsin(_)=je2=CO叶力$,专一)

Ki=95=j&^'=衣(。哼+)与n#9)

&旬@'工一任亨=岳子=j

加尸=1

1.2convertingfromCartesiantopolarcoordinates:

-2=28-3j=gr丐

i+/=

1+jL

匚7=e'

1

1.3.⑶E,=e^'dt=-P=0,because<oo

8

4E

“2/二

X

(b)X2(t)=e八|%2(/)|=1-ThereforefEr=L|2(%=Ldt=g,

产”=»%2,)产=料口,力=匿1=1

->82T/°

(c)X2(f)=cos(t).Therefore,E,=J管,3(3.d?=Lcos(4=8,

(d),“苏;刷=(加甘

Pg=0,becauseEt<0°

:=1£T-

®xAnfe\xM|-therefore,E,=1

NI21

尸8=吧齐言应叫』吧+1z

Z\nn=~N9

⑴乜川二兀.Therefore,邑飞履用广加式如「女呜〃)

COS<4

.cos(K

=..Iy(叫lim—1—t(-----J—)=-

的2^7、《了J…2N+1,2

(a)Thesignalx[njisshiftedby3totheright.Theshiftedsignalwillbezeroforn<l,Andn>7.

(b)Thesignalx[n]isshiftedby4totheleft.Theshiftedsignalwillbezeroforn<-6.Andn>0.

(c)Thesignalxfn]isflippedsignalwillbezeroforn<-landn>2.

(d)Thesignalx[n]isflippedandtheflippedsignalisshiftedby2totheright.ThenewSignalwillbe

zeroforn<-2andn>4.

(e)Thesignalx[n]isflippedandtheflippedandtheflippedsignalisshiftedby2totheleft.

Thisnewsignalwillbezeroforn<-6andn>0.

1.5.(a)x(l-t)isobtainedbyflippingx(t)andshiftingtheflippedsignalby1totheright.

Therefore,x(1-t)willbezerofort>-2.

(b)From(a),weknowthatx(l-t)iszerofort>-2.Similarly,x(2-t)iszerofort>-l,

Therefore,x(1-t)+x(2-t)willbezerofort>-2.

(c)x(3t)isobtainedbylinearlycompressionx(t)byafactorof3.Therefore,x(3t)willbe

zerofort<l.

2

(d)x(t/3)isobtainedbylinearlycompressionx(t)byafactorof3.Therefore,x(3t)willbe

zerofort<9.

1.6(a)xi(r)isnotperiodicbecauseitiszerofort<0.

(b)x2[n]=]foralln.Therefore,itisperiodicwithafundamentalperiodof1.

(c)巧[〃]isasshownintheFigureS1.6.

11111

xr[n・・・...

-40।4n

Therefore,itisperiodicIvithafundamentalpe#odof4.

1.7.(a)

£,(%」〃])=+-(«[«]-u[n-4]+u[-n]~u[-n-4])

>3

Therefore,£(xi[«])iszerofor|x,[n]|,

(b)Since川⑺isanoddsignal,f(%[«])iszeroforallvaluesoft.

(C);(同心如㈤+工卜叫=仁卜吟卜^卜-。]

Therefore,(%?)iszerowhen|??|<3andwhen|??|—>oo.

£"]W,1

(d)£(%«))=](%Kf)+%4(/))=1lr[e"5Q-2)_e5,“(」+2)I

Therefore,(X)iszeroonlywhen|/|—>oo.

e,⑺

⑶(况AyQ)})=-2=2e°'cos(0r+兀)

(b)(况,{%2(f)})=^cos(^-)cos(3r+2K)=cos(3r)=^()rcos(3r+0)

71

(c)(况。%3«)})=6-111(3兀+0=e-zsin(3r+y)

((X4)e-2tsin(100/)=e'sin(1OOf+兀)=°cos(100/+1)

1.9.月){is工供历友complexexponential.

ln_li

X|(0=//°'=々弛+]

(b)isacomplexexponentialmultipliedbyadecayingexponential.Therefore,

X2(z)isnotperiodic.

(c)Xj[n]isaperiodicsignal.XM=^'

X[.isacomplexexponentialwithafundamentalperiodof竺.

2=K

2兀

(d)x[〃]isaperiodicsignal.ThefundamentalperiodisgivenbyN=m(-~--)

=〃7(12)Bychoosingm=3.Weobtainthefundamentalperiodtobe10.

(e)%]川isnotperiodic.笛叫isacomplexexponentialwith卬;"wecannotnnaanyintegerm

suchthatm(2兀)isalsoaninteger.Therefore,isnotperiodic.

---X””]

Wo

1.10.x(r)=2cos(1Ot+l)-sin(4t-l)

PeriodoffirsttermintheRHS=2兀兀.

io=y

PeriodoffirsttermintheRHS=2兀_冗.

~T~2

Therefore,theoverallsignalisperiodicwithaperiodwhichtheleastcommon

multipleoftheperiodsofthefirstandsecondterms.Thisisequalto兀

3

1.11.x[n]=1+4-e铲

PeriodoffirsttermintheRHS=1.

PeriodofsecondtermintheRHS=(2兀)=7(whenm=2)

PeriodofsecondtermintheRHS27r)=5(whenm=l)

Therefore,theoverallsignalx[nlisperiodicwithaperiodwhichistheleastcommon

Multipleoftheperiodsofthethreetermsinnx[n].Thisisequalto35.

1.12.Thesignalx[n]isasshowninfigureSI.12.x[n]canbeobtainedbyflippingu[n]andthen

Shiftingtheflippedsignalby3totheright.Therefore,x[n]=u[-n+3].Thisimpliesthat

M=-landno=-3.

_0,z<—2

X0-力=Jx(8(T+2)-5(T-2))Jr=L_2<r<2

0,r>2

Therefore£oo=J

1.14Thesignalx(t)anditsderivativeg(t)areshowninFigureSI.14.

g⑺=3/("2幻-3%(一2女-1)

jt=-ock=—<x>

ThisimpliesthatA1=3,t[=0,A2=-3,andt2=1.

1.15(a)Thesignalx2[n],whichistheinputtoS2,isthesameasy1[n].Therefore,

1

y2(n]=x2[n-2]+不x[n-3]

22

1

=yj[n-2]+-y,[n-3]

=2x][n-2]+4x।[n-3]+^-(2x}ln-3]+4x]Ln-4])

=2xl[n-2]+5xj[n-3]+2x,[n-4J

Theinput-outputrelationshipforSis

y[n]=2x[n-2]+5x[n-3]+2x[n-4J

4

(b)Theinput-outputrelationshipdoesnotchangeiftheorderinwhichS(andS2areconnectedseries

reversed..WecaneasilyprovethisassumingthatS,followsS2.Inthiscase,thesignalx][n],whichisthe

inputtoSjisthesameasy2[n].

Thereforey,[n]=2x([n]+4x,[n-1]

=2y2[nj+4y2[n-1]

11

=2(x2[n-2]+-x9[n-3])+4(x2[n-3]+-x[n-4])

222

=2x2[n-2]+5x2[n-3]+2x2[n-4]

Theinput-outputrelationshipforSisonceagain

yln]=2x[n-2]+5x[n-3]+2x[n-4]

1.16(a)Thesystemisnotmemorylessbecauseyfn]depend^onpastvaluesofx[n].

(b)Theoutputofthesystemwillbey[n]=O[Tl]3[72—2]=0

(c)Fromtheresultofpart(b),wemayconcludethatthesystemoutputisalwayszeroforinputsofthe

form8[72—Z:],ker.Therefore,thesystemisnotinvertible.

1.17(a)Thesystemisnotcausalbecausetheoutputy(t)atsometimemaydependonfuturevaluesofx(t).For

instance,y(-K)=x(0).

(b)Considertwoarbitraryinputsx।(t)andx2(t).

X](t)->y!(t)=x/sinCt))

x2(t)fy2(t)=x2(sin(t))

Letx3(t)bealinearcombinationofx{(t)andx2(t).Thatis,x(t)=ax(t)+bx(t)

312

Whereaandbarearbitraryscalars.Ifx3(t)istheinputtothegivensystem,thenthecorrespondingoutput

y(t)isy(t)=x(sin(t))

333

=aX](sin(t))+x2(sin(t))

=ay!(t)+by2(t)

Therefore,thesystemislinear.

1.18.(a)Considertwoarbitraryinputsxjnjandx2[nJ.

x,[n]-yj[n]=网

k=n-nQ1

〃+〃o

X2[n]->y2[n]=网

k=n-nQ2

Letx3[n]bealinearcombinationofxjn]andx2[n].Thatis:

x3[n]=axJn]+bx2[n]

whereaandbarearbitraryscalars.Ifx3[n]istheinputtothegivensystem,thenthecorrespondingoutput

n_+_no

yIn]isy[n]=网

33如3

n+n

=Z(3伙]+如伙])=a£不[灯+bZ”,网

k=n-nf)k=n—nffk=n—n()2

=ay,[n]+by2ln]

Thereforethesystemislinear.

(b)ConsideranarbitraryinputxJnJ.Let

5

"+"o

yI[n]=Z*用

k=n-n01

bethecorrespondingoutput.Considerasecondinputx)[n]obtainedbyshiftingxjnjintime:

x2[n]=x1[n-n1J

Theoutputcorrespondingtothisinputis

n+nn+n

oon-n+n

11J=七机灯

y[n]=Z*[k]=伙-

2

k=n-n()2k=n-uok=n-n-n

io

n-之m+n先因.

Alsonotethaty1[n-nj]=

k=n-nl-nQ

Therefore,n=nn

y2llyil-i]

Thisimpliesthatthesystemistime-invariant.

(c)If|X[H]|<B,then<

y[n](2n+1)B.

Therefore,C<(2n0+1)B.o

9

1.19(a)(i)Considertwoarbitraryinputsx}(t)andx2(t).X]⑴->yI(t)=tx/t-l)

X2(t)-»y2(t)=fx2(t-l)

Letx3(t)bealinearcombinationofx}(t)andx2(t).Thatisx(t)=ax(t)+bx(t)

3I2

whereaandbarearbitraryscalars.Ifx3(t)istheinputtothegivensystem,thenthecorrespondingoutput

2

1S

y3(0y3(t)=tx3(t-i)

2

=t(ax,(t-l)+bx2(t-1))

=ay1(t)+by2(t)

Therefore,thesystemislinear.

(ii)Consideranarbitraryinputsxx(t).Letyx(t)=tx^t-1)

bethecorrespondingoutput.Considerasecondinputx2(t)obtainedbyshiftingx।(t)intime:

X2(t)=X[

Theoutputcorrespondingtothisinputisy(t)=tx(t-1)=t~x(t-1-1)

2221

Alsonotethaty](t-t0)=(t-t0)~x1(t・1・t0)Woy(t)

2

Thereforethesystemisnottime-invariant.

2

(b)(i)Considertwoarbitraryinputsxjnjandx2[nJ.x[n]—>y[n]=x[n-2]

2

X12[n]->y2[n]=x,[n-2J.

Letx3(t)bealinearcombinationofx}[njandx)[n].Thatisx3[n]=axJnJ+bx?[nJ

whereaandbarearbitraryscalars.Ifx3[n]istheinputtothegivensystem,thenthecorrespondingoutput

2

y[n]isy3[n]=x,[n-2]

3、

=(axJn-2]+bxJn-2])2

2222

=aXj[n-2]+bx2[n-2]+2abxJn-2]x,[n-2]

way1[n]+by2[n]

Thereforethesystemisnotlinear.

(ii)Consideranarbitraryinputxjn].Lety[n]=x]〜[n-2]

1

bethecorrespondingoutput.Considerasecondinputx2[n]obtainedbyshiftingx([n]intime:

x2[n]=xI[n-nJ

Theoutputcorrespondingtothisinputis

22

y2[n]=x2[n-2]=x,[n-2-nJ

6

2

Alsonotethaty(n-n]=x[n-2-n]

ifii0

Therefore,y2[n]=y][n-nJ

Thisimpliesthatthesystemistime-invariant.

(c)(i)Considertwoarbitraryinputsxjnjandx2[n].

xjn]-^y,[n]=x1[n+l]-x)[n-l]

x2[n]->y2[n]=x2[n+l]-x2[n-1]

Letx3[n]bealinearcombinationofxjn]andx2[n].Thatis:

x3[n]=axjn]4-bx2[n]

whereaandbarearbitraryscalars.Ifx3[n]istheinputtothegivensystem,thenthe

correspondingoutputy[n]isy[n]=x[n+1]-x[n-1]

3333

=axjn+ll+bx2[n+l]-axjn-l]-bx2[n-1]

=a(x1[n+l]-x1[n-l])+b(x2[n+1]-x2[n-1])

=ayI[n]+by2[n]

Thereforethesystemislinear.

(ii)ConsideranarbitraryinputxJnJ.Lety[n]=x[n+l]-x[n-1]

ii।

bethecorrespondingoutput.Considerasecondinputx2[n]obtainedbyshiftingxjn]intime:x2[n]=

x,[n-n0]

Theoutputcorrespondingtothisinputis

y2[n]=x2[n+l]-x2[n-1]=x,[n+l-n0]-x,[n-l-n0]

Alsonotethaty[n-n]=x[n+l-n]-x[n-1-n]

।ii

Therefore,yjn^yjn-nj00

Thisimpliesthatthesystemistime-invariant.

(d)(i)Considertwoarbitraryinputsx〕(t)andx2(t).

XI(t)->y1(t)=Od{x,(t)}

x2(t)->y2(t)=OJ{x2(t)}

Letx3(t)bealinearcombinationofx】(t)andx2(t).Thatisx(t)=ax(t)+bx(t)

312

whereaandbarearbitraryscalars.Ifx3(t)istheinputtothegivensystem,thenthecorrespondingoutput

y3(t)isy3(t)=OJ{x3(t)}

=Od{ax,(t)+bx2(t)}

=aOd{x,(t)}+bOJ{x2(t)}=ay,(t)+by2(t)

Thereforethesystemislinear.

(ii)Consideranarbitraryinputsx}(t).Let

11

八⑴二Od{x,(t)>2

bethecorrespondingoutput.Considerasecondinputx2(t)obtainedbyshiftingx](t)intime:

x2(t)=Xi(t-t0)

Theoutputcorrespondingtothisinputis

y2(0={x2⑴)=X2(t)-x2(-r)

2

一X(t-t)-x(zr

2

AlsonotethatYjx】(t-t())-X|(TT())-y⑴

22

Thereforethesystemisnottime-invariant.

7

1.20(a)Given

X(/)=e2jt—►y⑴=

XQ)=C-2jt_»y(t)=g-j3t

Sincethesystemliner

%(,)=1/2—+e-2”)ym=]/2(e小

e-j3t)

Therefore

X|(t)=COS(2t)------►y(/)=COS(3t)

(b)weknowthat

.2(t)=cos(2(t-l/2))=(e-je2jt+e,e"")/?

Usingthelinearityproperty,wemayonceagainwrite

兀(t)=:(eJe2j,+e'e-2j')_/)=cos(3t-l)

2_'e-3广

Therefore,

^(0=008(2(1-1/2))——►y=cos(3t-l)

1.21.ThesignalsaresketchedinfigureA1.21.

FigureS1.21

1.22ThesignalsaresketchedinfigureSI.22

1.23TheevenandoddpartsaresketchedinFigureS1.23

x[3-n]

x[n-41

(b)

x[n]u[n-3]=x[n]

x3n+l

x[3n]1/2

(d)

-1/2

(c)

8

FigureSI.23

-1/2

FigureSI.24

9

1.24TheevenandoddpartsaresketchedinFigureSI.24

1.25(a)periodicperiod=27t/(4)=n/2

(b)periodicperiod=27t/(4)=2

(c)x(t)=[l+cos(4t-2K/3)]/2.periodicperiod=27t/(4)=兀/2

(d)x(t)=cos(4兀t)/2.periodicperiod=2兀/(4)=1/2

(e)x(t)=[sin(4nt)u(t)-sin(47tt)u(-t)]/2.Notperiod.

(f)Notperiod.

1.26(a)periodic,period=7.

(b)Notperiod.

(c)periodic,period=8.

(d)x[n]=(l/2)[cos(37tn/4+cos(兀n/4)).periodic,period=8.

(e)periodic,period=16.

1.27(a)Linear,stable

(b)Notperiod.

(c)Linear

(d)Linear,causal,stable

(e)Timeinvariant,linear,causal,stable

(f)Linear,stable

(g)Timeinvariant,linear,causal

1.28(a)Linear,stable

(b)Timeinvariant,linear,causal,stable

(c)Memoryless,linear,causal

(d)Linear,stable

(e)Linear,stable

(f)Memoryless,linear,causal,stable

(g)Linear,stable

1.29(a)Considertwoinputstothesystemsuchthat

%四?]=况F[?]}andx2[/?]_2_^y21]=况*?]}

e

Nowconsiderathirdinput[n]=%,[n]+JQ[n].Thecorrespondingsystemoutput

y3r|=况我四}1

Willbe=况.凹+々四}

=况,{[]}+♦,{[]}

I2

therefore,wemayconcludethatthesystemisadditive

Letusnowassumethatinputstothesystemsuchthat

与四__。]=沆{[]}

andjn/4Xn.

x2P]_1_^2口=巩认

Nowconsiderathirdinput右[n]=X2[n]+x\[n].Thecorrespondingsystemoutput

Willbe

%四=况,{5/4刍[〃]}

=cos(兀〃/4)况{[]}-sin(nn/4)I{«[]}

+cos(nn/4)况{曰小-sin(兀〃/4)I(,£甲

+cos(冗〃/4)况[x["}-sin(兀〃/4)I{{»

=况平严M[〃]}+况e{e//4X[n]}

2

=%•]+%[〃]

therefore,wemayconcludethatthesystemisadditive

(b)(i)Considertwoinputstothesystemsuchthat

10

and1心⑺

士⑺4xf竺。々0)一%⑺

'一()=4(及dtdt

Nowconsiderathirdinput%[U=.[t]+JQ[tj.Thecorrespondingsystemoutput

Willbe1

ir^wT

2

i[「4)+K叫

i()+1()dbtdtXtJ

=%(')+丸G)

therefore,wemayconcludethatthesystemisnotadditive

Nowconsiderathirdinputx4[t]=ax\[t].Thecorrespondingsystemoutput

Willbe

1

av()[dt

r--12

adx(t)

Xi(r)Ldt

)

Therefore,thesystemishomogeneous.

(ii)Thissystemisnotadditive.Considerthefowlingexample.Let8[nj=28[n+2]+

28[n+l]+28[n]andx」n]=3[n+l]+2,[n+l]+3,

[n].Thecorrespondingoutputsevaluatedatn=0are

y][0]=2andy[0]=3/2

2

Nowconsiderathirdinputxy[n]=x2[n]+x][n].=38[n+2]+48[n+l]+58[n]

Thecorrespondingoutputsevaluatedatn=0is"(0]=15/4.Gnarly,ya10]Wyj〃]+y[0].This

x4[n]x4[n-2]

I,4L-」却

x

v“iotHei^ise

I。,'J'

.wr]

对]a匕%[]

n0n4ay4

e.otherwisen

Therefrore,thesystemishomogenous.

1.30(a)Invertible.Inversesystemy(t)=x(t+4)

(b)Noninvertible.Thesignalsx(t)andX](t)=x(t)+27igivethesameoutput

(c)$nland28[n]givethesameoutput

d)Invertible.Inversesystem;y(t)=dx(t)/dt

(e)Invertible.Inversesystemy(n)=x(n+l)forn>0andy[n]=x[n]forn<0

(f)Noninvertible.x(n)and-x(n)givethesameresult

(g)Invertible.Inversesystemy(n)=x(l-n)

(h)Invertible.Inversesystemy(t)=dx(t)/dt

(i)Invertible.Inversesystemy(n)=x(n)-(l/2)x[n-l]

(j)Noninvertible.Ifx(t)isanyconstant,theny(t)=O

(k)$n]and28[n]resultiny[n]=0

(1)Invertible.Inversesystem:y(t)=x(t/2)

(m)NoninvertibleX)[n]=而]+&i-l]andJQ[n]=册]givey[n]=8

(n)Invertible.Inversesystem:y[n]=x[2n][n]

1.31(a)NotethatX2(t]=X\[t]-xi[t-2J.Therefore,usinglinearitywegety2(t)=

yi(t)-yi(t-2).thisisshowninFigureSI.31

(b)Notethatx3(t)=xl[t]+xl[t+1]..Therefore,usinglinearitywegetY3(t)=yl(t)+yl(t+2).thisis

11

showninFigureSI.31

1.32Allstitementsaretrue

(1)x(t)periodicwithperiodT;y\(t)periodic,periodT/2

(2)y\(t)periodic,periodT;bx(t)periodic,period2T

(3)x(t)periodic,periodT;”(0periodic,period2T

(4)以⑴periodic,periodT;x(t)periodic,periodT/2;

1.33(1)Truex[n]=x[n+N];qi(n)=y](n+periodicwithN()=n/2

ifNisevenandwithperiodN()=nifNisodd.

(2)False.yin]periodicdoesnoimplyx[n]isperiodici.e.Letx[n]=g[n]+h[n]where

,1,neven,,,J0,neven

£[r/?]=1andh[rn]=S,

10,Hodd1(1/2)\«odd

Thenyi[n]=x[2n]isperiodicbutx[n]isclearlynotperiodic.

(3)True.x[n+N]=x[n];y2[n+No]-yz[n]whereNo=2N

(4)True,yo[n+N][nJ;[n+N。]=y2[nJwhereN°=N/2

1.34.(a)Consider

Z"〃]=x[0]+Z{+-}

n=-<x>

Ifx[n]isodd,x[n]+x[-n]=0.Therefore,the"国旗n乩nMitionevaluatestozero.

(b)Lety[n]=X|[n]x2[n].Then

y[-n]=Xj[-n]x2[-n]=-xi[n]x2[n]=-y[n].

Thisimpliesthaty[n]isodd.

(c)Consider

=“J抚卬+2

Usingtheresultofpart(b),weknowlliatxe[n]xo[n]isanodcfsignab.Therefore,using

theresultofpart(a)wemayconcludethat

2fxM¥0[〃]=0

〃=-co

Therefore,

n=-oow=—Xn=—oo

(d)Consider

「乙⑴力=£%:⑴山+匚%熊山+2匚%⑺]。(恤

Again,sincexe(t)xo(t)isodd,

rco

Therefore,

A

£w=£x^+f:xw,

1.35.WewanttofindthesmallestNosuchthatm(27i/N)No=2jikorNo=kN/m,

12

wherekisaninteger,thenNmustbeamultipleofm/kandm/kmustbeaninteger.thisimpliesthatm/kisa

divisorofbothmandN.Also,ifwewantthesmallestpossibleNo,thenm/kshouldbeth

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论