版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Signals&Systems
(SecondEdition)
—LearningInstructions
(Exercises
Answers)
DepartmentofComputerEngineering
2005.12
Contents
Chapter1,2
Chapter2-17
Chapter3-35
Chapter4-62
Chapter5,83
Chapter6-109
Chapter7-119
Chapter8,132
Ch叩ter9-140
Chapter1060
1
Chapter1Answers
1.1ConvertingfrompolartoCartesiancoordinates:
1/111-a_Icos^c4一1
—p——cos兀=———pi~-2
2e222e2
.n_产
eT=cos(_)+jsin(_)=je2=CO叶力$,专一)
Ki=95=j&^'=衣(。哼+)与n#9)
&旬@'工一任亨=岳子=j
加尸=1
1.2convertingfromCartesiantopolarcoordinates:
-2=28-3j=gr丐
i+/=
1+jL
匚7=e'
1
1.3.⑶E,=e^'dt=-P=0,because<oo
8
4E
“2/二
X
(b)X2(t)=e八|%2(/)|=1-ThereforefEr=L|2(%=Ldt=g,
产”=»%2,)产=料口,力=匿1=1
->82T/°
(c)X2(f)=cos(t).Therefore,E,=J管,3(3.d?=Lcos(4=8,
(d),“苏;刷=(加甘
Pg=0,becauseEt<0°
:=1£T-
®xAnfe\xM|-therefore,E,=1
NI21
尸8=吧齐言应叫』吧+1z
Z\nn=~N9
⑴乜川二兀.Therefore,邑飞履用广加式如「女呜〃)
COS<4
.cos(K
=..Iy(叫lim—1—t(-----J—)=-
的2^7、《了J…2N+1,2
(a)Thesignalx[njisshiftedby3totheright.Theshiftedsignalwillbezeroforn<l,Andn>7.
(b)Thesignalx[n]isshiftedby4totheleft.Theshiftedsignalwillbezeroforn<-6.Andn>0.
(c)Thesignalxfn]isflippedsignalwillbezeroforn<-landn>2.
(d)Thesignalx[n]isflippedandtheflippedsignalisshiftedby2totheright.ThenewSignalwillbe
zeroforn<-2andn>4.
(e)Thesignalx[n]isflippedandtheflippedandtheflippedsignalisshiftedby2totheleft.
Thisnewsignalwillbezeroforn<-6andn>0.
1.5.(a)x(l-t)isobtainedbyflippingx(t)andshiftingtheflippedsignalby1totheright.
Therefore,x(1-t)willbezerofort>-2.
(b)From(a),weknowthatx(l-t)iszerofort>-2.Similarly,x(2-t)iszerofort>-l,
Therefore,x(1-t)+x(2-t)willbezerofort>-2.
(c)x(3t)isobtainedbylinearlycompressionx(t)byafactorof3.Therefore,x(3t)willbe
zerofort<l.
2
(d)x(t/3)isobtainedbylinearlycompressionx(t)byafactorof3.Therefore,x(3t)willbe
zerofort<9.
1.6(a)xi(r)isnotperiodicbecauseitiszerofort<0.
(b)x2[n]=]foralln.Therefore,itisperiodicwithafundamentalperiodof1.
(c)巧[〃]isasshownintheFigureS1.6.
11111
xr[n・・・...
-40।4n
Therefore,itisperiodicIvithafundamentalpe#odof4.
1.7.(a)
£,(%」〃])=+-(«[«]-u[n-4]+u[-n]~u[-n-4])
>3
Therefore,£(xi[«])iszerofor|x,[n]|,
(b)Since川⑺isanoddsignal,f(%[«])iszeroforallvaluesoft.
(C);(同心如㈤+工卜叫=仁卜吟卜^卜-。]
Therefore,(%?)iszerowhen|??|<3andwhen|??|—>oo.
£"]W,1
(d)£(%«))=](%Kf)+%4(/))=1lr[e"5Q-2)_e5,“(」+2)I
Therefore,(X)iszeroonlywhen|/|—>oo.
e,⑺
⑶(况AyQ)})=-2=2e°'cos(0r+兀)
(b)(况,{%2(f)})=^cos(^-)cos(3r+2K)=cos(3r)=^()rcos(3r+0)
71
(c)(况。%3«)})=6-111(3兀+0=e-zsin(3r+y)
((X4)e-2tsin(100/)=e'sin(1OOf+兀)=°cos(100/+1)
1.9.月){is工供历友complexexponential.
ln_li
X|(0=//°'=々弛+]
(b)isacomplexexponentialmultipliedbyadecayingexponential.Therefore,
X2(z)isnotperiodic.
(c)Xj[n]isaperiodicsignal.XM=^'
X[.isacomplexexponentialwithafundamentalperiodof竺.
2=K
2兀
(d)x[〃]isaperiodicsignal.ThefundamentalperiodisgivenbyN=m(-~--)
=〃7(12)Bychoosingm=3.Weobtainthefundamentalperiodtobe10.
(e)%]川isnotperiodic.笛叫isacomplexexponentialwith卬;"wecannotnnaanyintegerm
suchthatm(2兀)isalsoaninteger.Therefore,isnotperiodic.
---X””]
Wo
1.10.x(r)=2cos(1Ot+l)-sin(4t-l)
PeriodoffirsttermintheRHS=2兀兀.
io=y
PeriodoffirsttermintheRHS=2兀_冗.
~T~2
Therefore,theoverallsignalisperiodicwithaperiodwhichtheleastcommon
multipleoftheperiodsofthefirstandsecondterms.Thisisequalto兀
3
1.11.x[n]=1+4-e铲
PeriodoffirsttermintheRHS=1.
PeriodofsecondtermintheRHS=(2兀)=7(whenm=2)
PeriodofsecondtermintheRHS27r)=5(whenm=l)
Therefore,theoverallsignalx[nlisperiodicwithaperiodwhichistheleastcommon
Multipleoftheperiodsofthethreetermsinnx[n].Thisisequalto35.
1.12.Thesignalx[n]isasshowninfigureSI.12.x[n]canbeobtainedbyflippingu[n]andthen
Shiftingtheflippedsignalby3totheright.Therefore,x[n]=u[-n+3].Thisimpliesthat
M=-landno=-3.
_0,z<—2
X0-力=Jx(8(T+2)-5(T-2))Jr=L_2<r<2
0,r>2
Therefore£oo=J
1.14Thesignalx(t)anditsderivativeg(t)areshowninFigureSI.14.
g⑺=3/("2幻-3%(一2女-1)
jt=-ock=—<x>
ThisimpliesthatA1=3,t[=0,A2=-3,andt2=1.
1.15(a)Thesignalx2[n],whichistheinputtoS2,isthesameasy1[n].Therefore,
1
y2(n]=x2[n-2]+不x[n-3]
22
1
=yj[n-2]+-y,[n-3]
=2x][n-2]+4x।[n-3]+^-(2x}ln-3]+4x]Ln-4])
=2xl[n-2]+5xj[n-3]+2x,[n-4J
Theinput-outputrelationshipforSis
y[n]=2x[n-2]+5x[n-3]+2x[n-4J
4
(b)Theinput-outputrelationshipdoesnotchangeiftheorderinwhichS(andS2areconnectedseries
reversed..WecaneasilyprovethisassumingthatS,followsS2.Inthiscase,thesignalx][n],whichisthe
inputtoSjisthesameasy2[n].
Thereforey,[n]=2x([n]+4x,[n-1]
=2y2[nj+4y2[n-1]
11
=2(x2[n-2]+-x9[n-3])+4(x2[n-3]+-x[n-4])
222
=2x2[n-2]+5x2[n-3]+2x2[n-4]
Theinput-outputrelationshipforSisonceagain
yln]=2x[n-2]+5x[n-3]+2x[n-4]
1.16(a)Thesystemisnotmemorylessbecauseyfn]depend^onpastvaluesofx[n].
(b)Theoutputofthesystemwillbey[n]=O[Tl]3[72—2]=0
(c)Fromtheresultofpart(b),wemayconcludethatthesystemoutputisalwayszeroforinputsofthe
form8[72—Z:],ker.Therefore,thesystemisnotinvertible.
1.17(a)Thesystemisnotcausalbecausetheoutputy(t)atsometimemaydependonfuturevaluesofx(t).For
instance,y(-K)=x(0).
(b)Considertwoarbitraryinputsx।(t)andx2(t).
X](t)->y!(t)=x/sinCt))
x2(t)fy2(t)=x2(sin(t))
Letx3(t)bealinearcombinationofx{(t)andx2(t).Thatis,x(t)=ax(t)+bx(t)
312
Whereaandbarearbitraryscalars.Ifx3(t)istheinputtothegivensystem,thenthecorrespondingoutput
y(t)isy(t)=x(sin(t))
333
=aX](sin(t))+x2(sin(t))
=ay!(t)+by2(t)
Therefore,thesystemislinear.
1.18.(a)Considertwoarbitraryinputsxjnjandx2[nJ.
x,[n]-yj[n]=网
k=n-nQ1
〃+〃o
X2[n]->y2[n]=网
k=n-nQ2
Letx3[n]bealinearcombinationofxjn]andx2[n].Thatis:
x3[n]=axJn]+bx2[n]
whereaandbarearbitraryscalars.Ifx3[n]istheinputtothegivensystem,thenthecorrespondingoutput
n_+_no
yIn]isy[n]=网
33如3
n+n
=Z(3伙]+如伙])=a£不[灯+bZ”,网
k=n-nf)k=n—nffk=n—n()2
=ay,[n]+by2ln]
Thereforethesystemislinear.
(b)ConsideranarbitraryinputxJnJ.Let
5
"+"o
yI[n]=Z*用
k=n-n01
bethecorrespondingoutput.Considerasecondinputx)[n]obtainedbyshiftingxjnjintime:
x2[n]=x1[n-n1J
Theoutputcorrespondingtothisinputis
n+nn+n
oon-n+n
11J=七机灯
y[n]=Z*[k]=伙-
2
k=n-n()2k=n-uok=n-n-n
io
n-之m+n先因.
Alsonotethaty1[n-nj]=
k=n-nl-nQ
Therefore,n=nn
y2llyil-i]
Thisimpliesthatthesystemistime-invariant.
(c)If|X[H]|<B,then<
y[n](2n+1)B.
Therefore,C<(2n0+1)B.o
9
1.19(a)(i)Considertwoarbitraryinputsx}(t)andx2(t).X]⑴->yI(t)=tx/t-l)
X2(t)-»y2(t)=fx2(t-l)
Letx3(t)bealinearcombinationofx}(t)andx2(t).Thatisx(t)=ax(t)+bx(t)
3I2
whereaandbarearbitraryscalars.Ifx3(t)istheinputtothegivensystem,thenthecorrespondingoutput
2
1S
y3(0y3(t)=tx3(t-i)
2
=t(ax,(t-l)+bx2(t-1))
=ay1(t)+by2(t)
Therefore,thesystemislinear.
(ii)Consideranarbitraryinputsxx(t).Letyx(t)=tx^t-1)
bethecorrespondingoutput.Considerasecondinputx2(t)obtainedbyshiftingx।(t)intime:
X2(t)=X[
Theoutputcorrespondingtothisinputisy(t)=tx(t-1)=t~x(t-1-1)
2221
Alsonotethaty](t-t0)=(t-t0)~x1(t・1・t0)Woy(t)
2
Thereforethesystemisnottime-invariant.
2
(b)(i)Considertwoarbitraryinputsxjnjandx2[nJ.x[n]—>y[n]=x[n-2]
2
X12[n]->y2[n]=x,[n-2J.
Letx3(t)bealinearcombinationofx}[njandx)[n].Thatisx3[n]=axJnJ+bx?[nJ
whereaandbarearbitraryscalars.Ifx3[n]istheinputtothegivensystem,thenthecorrespondingoutput
2
y[n]isy3[n]=x,[n-2]
3、
=(axJn-2]+bxJn-2])2
2222
=aXj[n-2]+bx2[n-2]+2abxJn-2]x,[n-2]
way1[n]+by2[n]
Thereforethesystemisnotlinear.
(ii)Consideranarbitraryinputxjn].Lety[n]=x]〜[n-2]
1
bethecorrespondingoutput.Considerasecondinputx2[n]obtainedbyshiftingx([n]intime:
x2[n]=xI[n-nJ
Theoutputcorrespondingtothisinputis
22
y2[n]=x2[n-2]=x,[n-2-nJ
6
2
Alsonotethaty(n-n]=x[n-2-n]
ifii0
Therefore,y2[n]=y][n-nJ
Thisimpliesthatthesystemistime-invariant.
(c)(i)Considertwoarbitraryinputsxjnjandx2[n].
xjn]-^y,[n]=x1[n+l]-x)[n-l]
x2[n]->y2[n]=x2[n+l]-x2[n-1]
Letx3[n]bealinearcombinationofxjn]andx2[n].Thatis:
x3[n]=axjn]4-bx2[n]
whereaandbarearbitraryscalars.Ifx3[n]istheinputtothegivensystem,thenthe
correspondingoutputy[n]isy[n]=x[n+1]-x[n-1]
3333
=axjn+ll+bx2[n+l]-axjn-l]-bx2[n-1]
=a(x1[n+l]-x1[n-l])+b(x2[n+1]-x2[n-1])
=ayI[n]+by2[n]
Thereforethesystemislinear.
(ii)ConsideranarbitraryinputxJnJ.Lety[n]=x[n+l]-x[n-1]
ii।
bethecorrespondingoutput.Considerasecondinputx2[n]obtainedbyshiftingxjn]intime:x2[n]=
x,[n-n0]
Theoutputcorrespondingtothisinputis
y2[n]=x2[n+l]-x2[n-1]=x,[n+l-n0]-x,[n-l-n0]
Alsonotethaty[n-n]=x[n+l-n]-x[n-1-n]
।ii
Therefore,yjn^yjn-nj00
Thisimpliesthatthesystemistime-invariant.
(d)(i)Considertwoarbitraryinputsx〕(t)andx2(t).
XI(t)->y1(t)=Od{x,(t)}
x2(t)->y2(t)=OJ{x2(t)}
Letx3(t)bealinearcombinationofx】(t)andx2(t).Thatisx(t)=ax(t)+bx(t)
312
whereaandbarearbitraryscalars.Ifx3(t)istheinputtothegivensystem,thenthecorrespondingoutput
y3(t)isy3(t)=OJ{x3(t)}
=Od{ax,(t)+bx2(t)}
=aOd{x,(t)}+bOJ{x2(t)}=ay,(t)+by2(t)
Thereforethesystemislinear.
(ii)Consideranarbitraryinputsx}(t).Let
11
八⑴二Od{x,(t)>2
bethecorrespondingoutput.Considerasecondinputx2(t)obtainedbyshiftingx](t)intime:
x2(t)=Xi(t-t0)
Theoutputcorrespondingtothisinputis
y2(0={x2⑴)=X2(t)-x2(-r)
2
一X(t-t)-x(zr
2
AlsonotethatYjx】(t-t())-X|(TT())-y⑴
22
Thereforethesystemisnottime-invariant.
7
1.20(a)Given
X(/)=e2jt—►y⑴=
XQ)=C-2jt_»y(t)=g-j3t
Sincethesystemliner
%(,)=1/2—+e-2”)ym=]/2(e小
e-j3t)
Therefore
X|(t)=COS(2t)------►y(/)=COS(3t)
(b)weknowthat
.2(t)=cos(2(t-l/2))=(e-je2jt+e,e"")/?
Usingthelinearityproperty,wemayonceagainwrite
兀(t)=:(eJe2j,+e'e-2j')_/)=cos(3t-l)
2_'e-3广
Therefore,
^(0=008(2(1-1/2))——►y=cos(3t-l)
1.21.ThesignalsaresketchedinfigureA1.21.
FigureS1.21
1.22ThesignalsaresketchedinfigureSI.22
1.23TheevenandoddpartsaresketchedinFigureS1.23
x[3-n]
x[n-41
(b)
x[n]u[n-3]=x[n]
x3n+l
x[3n]1/2
(d)
-1/2
(c)
⑴
8
FigureSI.23
-1/2
FigureSI.24
9
1.24TheevenandoddpartsaresketchedinFigureSI.24
1.25(a)periodicperiod=27t/(4)=n/2
(b)periodicperiod=27t/(4)=2
(c)x(t)=[l+cos(4t-2K/3)]/2.periodicperiod=27t/(4)=兀/2
(d)x(t)=cos(4兀t)/2.periodicperiod=2兀/(4)=1/2
(e)x(t)=[sin(4nt)u(t)-sin(47tt)u(-t)]/2.Notperiod.
(f)Notperiod.
1.26(a)periodic,period=7.
(b)Notperiod.
(c)periodic,period=8.
(d)x[n]=(l/2)[cos(37tn/4+cos(兀n/4)).periodic,period=8.
(e)periodic,period=16.
1.27(a)Linear,stable
(b)Notperiod.
(c)Linear
(d)Linear,causal,stable
(e)Timeinvariant,linear,causal,stable
(f)Linear,stable
(g)Timeinvariant,linear,causal
1.28(a)Linear,stable
(b)Timeinvariant,linear,causal,stable
(c)Memoryless,linear,causal
(d)Linear,stable
(e)Linear,stable
(f)Memoryless,linear,causal,stable
(g)Linear,stable
1.29(a)Considertwoinputstothesystemsuchthat
%四?]=况F[?]}andx2[/?]_2_^y21]=况*?]}
e
Nowconsiderathirdinput[n]=%,[n]+JQ[n].Thecorrespondingsystemoutput
y3r|=况我四}1
Willbe=况.凹+々四}
=况,{[]}+♦,{[]}
I2
therefore,wemayconcludethatthesystemisadditive
Letusnowassumethatinputstothesystemsuchthat
与四__。]=沆{[]}
andjn/4Xn.
x2P]_1_^2口=巩认
Nowconsiderathirdinput右[n]=X2[n]+x\[n].Thecorrespondingsystemoutput
Willbe
%四=况,{5/4刍[〃]}
=cos(兀〃/4)况{[]}-sin(nn/4)I{«[]}
+cos(nn/4)况{曰小-sin(兀〃/4)I(,£甲
+cos(冗〃/4)况[x["}-sin(兀〃/4)I{{»
=况平严M[〃]}+况e{e//4X[n]}
2
=%•]+%[〃]
therefore,wemayconcludethatthesystemisadditive
(b)(i)Considertwoinputstothesystemsuchthat
10
and1心⑺
士⑺4xf竺。々0)一%⑺
'一()=4(及dtdt
Nowconsiderathirdinput%[U=.[t]+JQ[tj.Thecorrespondingsystemoutput
Willbe1
ir^wT
2
i[「4)+K叫
i()+1()dbtdtXtJ
=%(')+丸G)
therefore,wemayconcludethatthesystemisnotadditive
Nowconsiderathirdinputx4[t]=ax\[t].Thecorrespondingsystemoutput
Willbe
1
av()[dt
r--12
adx(t)
Xi(r)Ldt
)
Therefore,thesystemishomogeneous.
(ii)Thissystemisnotadditive.Considerthefowlingexample.Let8[nj=28[n+2]+
28[n+l]+28[n]andx」n]=3[n+l]+2,[n+l]+3,
[n].Thecorrespondingoutputsevaluatedatn=0are
y][0]=2andy[0]=3/2
2
Nowconsiderathirdinputxy[n]=x2[n]+x][n].=38[n+2]+48[n+l]+58[n]
Thecorrespondingoutputsevaluatedatn=0is"(0]=15/4.Gnarly,ya10]Wyj〃]+y[0].This
x4[n]x4[n-2]
I,4L-」却
x
v“iotHei^ise
I。,'J'
.wr]
对]a匕%[]
n0n4ay4
e.otherwisen
Therefrore,thesystemishomogenous.
1.30(a)Invertible.Inversesystemy(t)=x(t+4)
(b)Noninvertible.Thesignalsx(t)andX](t)=x(t)+27igivethesameoutput
(c)$nland28[n]givethesameoutput
d)Invertible.Inversesystem;y(t)=dx(t)/dt
(e)Invertible.Inversesystemy(n)=x(n+l)forn>0andy[n]=x[n]forn<0
(f)Noninvertible.x(n)and-x(n)givethesameresult
(g)Invertible.Inversesystemy(n)=x(l-n)
(h)Invertible.Inversesystemy(t)=dx(t)/dt
(i)Invertible.Inversesystemy(n)=x(n)-(l/2)x[n-l]
(j)Noninvertible.Ifx(t)isanyconstant,theny(t)=O
(k)$n]and28[n]resultiny[n]=0
(1)Invertible.Inversesystem:y(t)=x(t/2)
(m)NoninvertibleX)[n]=而]+&i-l]andJQ[n]=册]givey[n]=8
(n)Invertible.Inversesystem:y[n]=x[2n][n]
1.31(a)NotethatX2(t]=X\[t]-xi[t-2J.Therefore,usinglinearitywegety2(t)=
yi(t)-yi(t-2).thisisshowninFigureSI.31
(b)Notethatx3(t)=xl[t]+xl[t+1]..Therefore,usinglinearitywegetY3(t)=yl(t)+yl(t+2).thisis
11
showninFigureSI.31
1.32Allstitementsaretrue
(1)x(t)periodicwithperiodT;y\(t)periodic,periodT/2
(2)y\(t)periodic,periodT;bx(t)periodic,period2T
(3)x(t)periodic,periodT;”(0periodic,period2T
(4)以⑴periodic,periodT;x(t)periodic,periodT/2;
1.33(1)Truex[n]=x[n+N];qi(n)=y](n+periodicwithN()=n/2
ifNisevenandwithperiodN()=nifNisodd.
(2)False.yin]periodicdoesnoimplyx[n]isperiodici.e.Letx[n]=g[n]+h[n]where
,1,neven,,,J0,neven
£[r/?]=1andh[rn]=S,
10,Hodd1(1/2)\«odd
Thenyi[n]=x[2n]isperiodicbutx[n]isclearlynotperiodic.
(3)True.x[n+N]=x[n];y2[n+No]-yz[n]whereNo=2N
(4)True,yo[n+N][nJ;[n+N。]=y2[nJwhereN°=N/2
1.34.(a)Consider
Z"〃]=x[0]+Z{+-}
n=-<x>
Ifx[n]isodd,x[n]+x[-n]=0.Therefore,the"国旗n乩nMitionevaluatestozero.
(b)Lety[n]=X|[n]x2[n].Then
y[-n]=Xj[-n]x2[-n]=-xi[n]x2[n]=-y[n].
Thisimpliesthaty[n]isodd.
(c)Consider
=“J抚卬+2
Usingtheresultofpart(b),weknowlliatxe[n]xo[n]isanodcfsignab.Therefore,using
theresultofpart(a)wemayconcludethat
2fxM¥0[〃]=0
〃=-co
Therefore,
n=-oow=—Xn=—oo
(d)Consider
「乙⑴力=£%:⑴山+匚%熊山+2匚%⑺]。(恤
Again,sincexe(t)xo(t)isodd,
rco
Therefore,
A
£w=£x^+f:xw,
1.35.WewanttofindthesmallestNosuchthatm(27i/N)No=2jikorNo=kN/m,
12
wherekisaninteger,thenNmustbeamultipleofm/kandm/kmustbeaninteger.thisimpliesthatm/kisa
divisorofbothmandN.Also,ifwewantthesmallestpossibleNo,thenm/kshouldbeth
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 运输服务合同(2篇)
- 少先队课件模板
- 推敲课件苏教版
- 古诗词诵读《燕歌行并序》-高二语文大单元教学同步备课(统编版选择性必修中册)
- 第14课 《背影》-八年级语文上册同步备课精讲(统编版)
- 蚂蚁 故事 课件
- 西南林业大学《比较文学概论》2023-2024学年第一学期期末试卷
- 西京学院《建筑信息模型》2022-2023学年第一学期期末试卷
- 西京学院《机械原理》2022-2023学年第一学期期末试卷
- 温度变化对化学平衡的移动影响
- 高速公路监控摄像机太阳能供电系统
- 仪表验收检查表
- 全国中学生数学能力竞赛组织委员会
- 现浇砼路肩现场施工方法
- 新人教版八年级数学上册半期考试试卷
- 核反应堆基本概念
- MIDAS台车计算书及建模过程
- 50m3谷氨酸发酵罐设计
- 学生日常行为表现记录表(共10页)
- MIDAS GTS理论分析_2
- 高边坡脚手架专项施工方案
评论
0/150
提交评论