计量经济学实验二_第1页
计量经济学实验二_第2页
计量经济学实验二_第3页
计量经济学实验二_第4页
计量经济学实验二_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计量经济学实验二实验二(一)异方差性【实验目的】掌握异方差性的检验及处理方法【实验内容】建立并检验我国制造业利润函数模型【实验步骤】【例1】表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。表1我国制造工业1998年销售利润与销售收入情况行业名称销售利润销售收入行业名称销售利润销售收入食品加工业187.253180.44医药制造业238.711264.1食品制造业111.421119.88化学纤维制品81.57779.46饮料制造业205.421489.89橡胶制品业77.84692.08烟草加工业183.871328.59塑料制品业144.341345图3样本1回归结果⑶利用样本2建立回归模型2(回归结果如图4),其残差平方和为63769.67。SMPL1928LSYCX图4样本2回归结果⑷计算F统计量:=63769.67/2579.59=24.72,分别是模型1和模型2的残差平方和。取时,查F分布表得,而,所以存在异方差性⒊White检验⑴建立回归模型:LSYCX,回归结果如图5。图5我国制造业销售利润回归模型⑵在方程窗口上点击View\Residual\Test\WhiteHeteroskedastcity,检验结果如图6。图6White检验结果其中F值为辅助回归模型的F统计量值。取显著水平,由于,所以存在异方差性。实际应用中可以直接观察相伴概率p值的大小,若p值较小,则认为存在异方差性。反之,则认为不存在异方差性。⒋Park检验⑴建立回归模型(结果同图5所示)。⑵生成新变量序列:GENRLNE2=log(RESID^2)GENRLNX=log⑶建立新残差序列对解释变量的回归模型:LSLNE2CLNX,回归结果如图7所示。图7Park检验回归模型从图7所示的回归结果中可以看出,LNX的系数估计值不为0且能通过显著性检验,即随即误差项的方差与解释变量存在较强的相关关系,即认为存在异方差性。⒌Gleiser检验(Gleiser检验与Park检验原理相同)⑴建立回归模型(结果同图5所示)。⑵生成新变量序列:GENRE=ABS(RESID)⑶分别建立新残差序列(E)对各解释变量(XX^2X^(1/2)X^(-1)X^(-2)X^(-1/2))的回归模型:LSECX,回归结果如图8所示。图8由上述各回归结果可知,各回归模型中解释变量的系数估计值显著不为0且均能通过显著性检验。所以认为存在异方差性。⑷由F值或确定异方差类型调整异方差性⒈确定权数变量根据Park检验生成权数变量:GENRW1=1/X^1.6743根据Gleiser检验生成权数变量:GENRW2=1/X^0.5另外生成:GENRW3=1/ABS(RESID)GENRW4=1/RESID^2⒉利用加权最小二乘法估计模型在Eviews命令窗口中依次键入命令:LS(W=)YCX或在方程窗口中点击Estimate\Option按钮,并在权数变量栏里依次输入W1、W2、W3、W4,进行回归w1结果图所示。图9⒊对所估计的模型再进行White检验,观察异方差的调整情况对所估计的模型再进行White检验。图10

(二)自相关性【实验目的】掌握自相关性的检验与处理方法。【实验内容】利用表5-1资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相关性。表5-1我国城乡居民储蓄存款与GDP统计资料(1978年=100)年份存款余额YGDP指数X年份存款余额YGDP指数X1978210.60100.019895146.90271.31979281.00107.619907034.20281.71980399.50116.019919107.00307.61981523.70122.1199211545.40351.41982675.40133.1199314762.39398.81983892.50147.6199421518.80449.319841214.70170.0199529662.25496.519851622.60192.9199638520.84544.119862237.60210.0199746279.80592.019873073.30234.0199853407.47638.219883801.50260.7【实验步骤】一、回归模型的筛选⒈相关图分析SCATXY相关图表明,GDP指数与居民储蓄存款二者的曲线相关关系较为明显。现将函数初步设定为线性、双对数、对数、指数、二次多项式等不同形式,进而加以比较分析。⒉估计模型,利用LS命令分别建立以下模型LSYCX(-6.706)(13.862)=0.9100F=192.145S.E=5030.809二、自相关性检验⒈DW检验;双对数模型因为n=21,k=1,取显著性水平=0.05时,查表得=1.22,=1.42,而0<0.7062=DW<,所以存在(正)自相关。⒉偏相关系数检验在方程窗口中点击View/ResidualTest/Correlogram-Q-statistics,并输入滞后期为10,则会得到残差与的各期相关系数和偏相关系数。⒊BG检验在方程窗口中点击View/ResidualTest/SeriesCorrelationLMTest,并选择滞后期为2,则会得到如图所示的信息。图双对数模型的BG检验图中,=11.31531,临界概率P=0.0034,因此辅助回归模型是显著的,即存在自相关性。又因为,的回归系数均显著地不为0,说明双对数模型存在一阶和二阶自相关性。三、自相关性的调整:加入AR项对双对数模型进行调整;在LS命令中加上AR(1)和AR(2),使用迭代估计法估计模型。键入命令:LSLNYCLNXAR(1)AR(2)结果表明,估计过程经过4次迭代后收敛;,的估计值分别为0.9459和-0.5914,并且检验显著,说明双对数模型确实存在一阶和二阶自相关性。调整后模型的DW=1.6445,n=19,k=1,取显著性水平=0.05时,查表得=1.18,=1.40,而<1.6445=DW<4-,说明模型不存在一阶自相关性;再进行偏相关系数检验(图5-17)和BG检验(图5-18),也表明不存在高阶自相关性,因此,中国城乡居民储蓄存款的双对数模型为:(-25.263)(52.683)=0.9982F=2709.985S.E=0.0744DW=1.6445四、重新设定双对数模型中的解释变量:模型1:加入上期储蓄LNY(-1);模型2:解释变量取成:上期储蓄LNY(-1)、本期X的增长DLOG(X)。⒈检验自相关性;⑴模型1键入命令:LSLNYCLNXLNY(-1)结果表明了DW=1.358,n=20,k=2,查表得=1.100,=1.537,而<1.358

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论