第八章解析几何(直线与圆圆锥曲线)-2024年高考数学专题测试模拟卷(新高考专用)(原题卷)_第1页
第八章解析几何(直线与圆圆锥曲线)-2024年高考数学专题测试模拟卷(新高考专用)(原题卷)_第2页
第八章解析几何(直线与圆圆锥曲线)-2024年高考数学专题测试模拟卷(新高考专用)(原题卷)_第3页
第八章解析几何(直线与圆圆锥曲线)-2024年高考数学专题测试模拟卷(新高考专用)(原题卷)_第4页
第八章解析几何(直线与圆圆锥曲线)-2024年高考数学专题测试模拟卷(新高考专用)(原题卷)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

备战2024年高考阶段性检测名校重组卷(新高考)解析几何本试卷22小题,满分150分。考试用时120分钟一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2023·广东·高三统考模拟预测)设,则“”是“直线与直线平行”的(

)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.(2023·南京模拟)已知椭圆的两个焦点分别为F1(0,2),F2(0,-2),P为椭圆上任意一点,若|F1F2|是|PF1|,|PF2|的等差中项,则此椭圆的标准方程为()A.eq\f(x2,64)+eq\f(y2,60)=1 B.eq\f(y2,64)+eq\f(x2,60)=1C.eq\f(x2,16)+eq\f(y2,12)=1 D.eq\f(y2,16)+eq\f(x2,12)=13.(2023·广东江门·统考模拟预测)若直线与圆相交于P,Q两点,且(其中O为坐标原点),则b的值为(

)A.1 B. C. D.4.(2023·昆明模拟)已知椭圆eq\f(x2,4)+eq\f(y2,3)=1的两个焦点为F1,F2,过F2的直线交椭圆于M,N两点,则△F1MN的周长为()A.2B.4C.6D.85.(2023·湖南长沙·长沙市明德中学校考三模)已知抛物线的焦点为,准线为,为上一点,,垂足为,与轴交点为,若,且的面积为,则的方程为(

)A. B. C. D.6.(2023·江苏·统考三模)已知F为椭圆C:的右焦点,P为C上一点,Q为圆M:上一点,则PQ+PF的最大值为(

)A.3 B.6C. D.7.(2023·浙江·统考二模)已知是圆上一点,是圆的直径,弦的中点为.若点在第一象限,直线、的斜率之和为0,则直线的斜率是(

)A. B. C. D.8.(2022·济南模拟)已知抛物线C:y2=4x,圆F:(x-1)2+y2=1,直线l:y=k(x-1)(k≠0)自上而下顺次与上述两曲线交于M1,M2,M3,M4四点,则下列各式结果为定值的是()A.|M1M2|·|M3M4| B.|FM1|·|FM4|C.|M1M3|·|M2M4| D.|FM1|·|M1M2|二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.(2023·广东肇庆·统考一模)已知圆,直线,则(

)A.直线过定点B.直线与圆可能相离C.圆被轴截得的弦长为D.圆被直线截得的弦长最短时,直线的方程为10.(2023·安徽马鞍山·统考三模)已知抛物线:的焦点为,点为坐标原点,点在抛物线上,直线与抛物线交于点,则(

)A.的准线方程为 B.C.直线的斜率为 D.11..(2023·湖北四地联考)已知椭圆C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,长轴长为4,点P(eq\r(2),1)在椭圆C外,点Q在椭圆C上,则()A.椭圆C的离心率的取值范围是B.当椭圆C的离心率为eq\f(\r(3),2)时,|QF1|的取值范围是[2-eq\r(3),2+eq\r(3)]C.存在点Q使得eq\o(QF1,\s\up6(→))·eq\o(QF2,\s\up6(→))=0D.eq\f(1,|QF1|)+eq\f(1,|QF2|)的最小值为112.(2023·湖南邵阳·统考三模)已知双曲线C的左、右焦点分别为,,双曲线具有如下光学性质:从右焦点发出的光线m交双曲线右支于点P,经双曲线反射后,反射光线n的反向延长线过左焦点,如图所示.若双曲线C的一条渐近线的方程为,则下列结论正确的有(

)A.双曲线C的方程为B.若,则C.若射线n所在直线的斜率为k,则D.当n过点M(8,5)时,光由所经过的路程为10三、填空题:本大题共4小题,每小题5分,共20分。13.(2023·浙江台州·统考二模)已知椭圆经过点和,则椭圆的离心率为___________.14.(2023·浙江·统考二模)已知圆,若被两坐标轴截得的弦长相等,则__________.15.(2023·长沙模拟)已知抛物线C:y2=16x,倾斜角为eq\f(π,6)的直线l过焦点F交抛物线于A,B两点,O为坐标原点,则△ABO的面积为________.16.(2023·辽宁大连·统考三模)已知为坐标原点,是双曲线的左、右焦点,双曲线上一点满足,且,则双曲线的渐近线方程为__________.点A是双曲线上一定点,过点的动直线与双曲线交于两点,为定值,则当时实数的值为__________.四、解答题:本大题共6小题,共70分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。17.(2023·衡水模拟)已知椭圆C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,离心率为eq\f(\r(2),2),短轴顶点分别为M,N,四边形MF1NF2的面积为32.(1)求椭圆C的标准方程;(2)直线l交椭圆C于A,B两点,若AB的中点坐标为(-2,1),求直线l的方程.18.(2023·重庆·统考三模)已知椭圆的上、下顶点分别为,左顶点为,是面积为的正三角形.(1)求椭圆的方程;(2)过椭圆外一点的直线交椭圆于两点,已知点与点关于轴对称,点与点关于轴对称,直线与交于点,若是钝角,求的取值范围.19.(2023·安徽·校联考三模)如图,椭圆的左、右焦点分别为,,点A,B,C分别为椭圆的左、右顶点和上顶点,O为坐标原点,过点的直线l交椭圆于E,F两点,线段的中点为.点P是上在第一象限内的动点,直线AP与直线BC相交于点Q,直线CP与x轴相交于点M.(1)求椭圆的方程;(2)设的面积为,的面积为,求的值.20.(2023·安徽蚌埠·统考三模)已知,是双曲线的左、右顶点,为双曲线上与,不重合的点.(1)设直线,的斜率分别为,,求证:是定值;(2)设直线与直线交于点,与轴交于点,点满足,直线与双曲线交于点(与,,不重合).判断直线是否过定点,若直线过定点,求出该定点坐标;若直线不过定点,请说明理由.21.(2023·山西运城·统考三模)已知抛物线的焦点为,分别为上两个不同的动点,为坐标原点,当为等边三角形时,.(1)求的标准方程;(2)抛物线在第一象限的部分是否存在点,使得点满足,且点到直线的距离为2?若存在,求出点的坐标及直线的方程;若不存在,请说明理由.22.(2023·山东淄博·统考二模)“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长.某些折纸活动蕴含丰富的数学内容,例如:用一张圆形纸片,按如下步骤折纸(如图)步骤1:设圆心是,在圆内异于圆心处取一点,标记为;步骤2:把纸片折叠,使圆周正好通过点;步骤3:把纸片展开,并留下一道折痕;步骤4:不断重复步骤2和3,就能得到越来越多的折痕.则这些折痕

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论