专题24三角函数的应用(原卷版)_第1页
专题24三角函数的应用(原卷版)_第2页
专题24三角函数的应用(原卷版)_第3页
专题24三角函数的应用(原卷版)_第4页
专题24三角函数的应用(原卷版)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辅导专题24三角函数的应用专题训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示是某弹簧振子做简谐运动的部分图象,则下列判断错误的是()A.该弹簧振子的振幅为B.该弹簧振子的振动周期为C.该弹簧振子在和时振动速度最大D.该弹簧振子在和时的位移为零2.音叉是呈“Y”形的钢质或铝合金发声器(如图1),各种音叉可因其质量和叉臂长短、粗细不同而在振动时发出不同频率的纯音.敲击某个音叉时,在一定时间内,音叉上点P离开平衡位置的位移与时间的函数关系为.图2是该函数在一个周期内的图象,根据图中数据可确定的值为()A.200 B.400 C. D.3.某校高一年级研究性学习小组利用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,其工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚,探测器接收反射光.当被测物体横向速度为零时,反射光与探测光频率相同.当横向速度不为零时,反射光相对探测光会发生频移,其中为测速仪测得被测物体的橫向速度,为激光波长,为两束探测光线夹角的一半,如图.若激光测速仪安装在距离高铁处,发出的激光波长为,测得某时刻频移为,则该时刻高铁的速度约等于()A. B. C. D.4.2020年7月31日上午,中共中央总书记、国家主席、中央军委主席习近平宣布北斗三号全球卫星导航系统正式开通并提出“新时代北斗精神”.已知组成北斗三号全球卫星导航系统的卫星中包含有地球静止轨道卫星,它的运行轨道为圆形轨道,角速度约为15度/小时,若将卫星抽象为质点,以地球球心为原点,在卫星运行轨道所在平面建立平面直角坐标系,则以下函数模型中最适合用来刻画地球静止轨道卫星的纵坐标与运行时间的关系的是()A.指数函数模型 B.对数函数模型 C.幂函数模型 D.三角函数模型5.某港口某天0时至24时的水深(米)随时间(时)变化曲线近似满足如下函数模型().若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为()A.16时 B.17时 C.18时 D.19时6.一半径为的水轮如图所示,水轮圆心距离水面,已知水轮每逆时针转动一圈,如果当水轮上点从水中浮现时(图中点)开始计时,则()A.点第一次到达最高点需要B.在水轮转动的一圈内,点距离水面的高度不低于共有的时间C.点距离水面的高度(单位:)与时间(单位:)的函数解析式为D.当水轮转动时,点在水面下方,距离水面二、多选题7.动点P(x,y)在单位圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,24秒旋转一周.已知时间t=0时,点P坐标为,当t∈[0,24]时,记动点P的横、纵坐标之和x+y为关于t(单位:秒)的函数g(t),则关于函数g(t)描述正确的是()A. B.g(t)在[5,17]上单调递减C.g(13)=g(21) D.g(t)在区间[0,24]上有3个零点8.水车在古代是进行灌溉引水的工具,亦称“水转简车”,是一种以水流作动力,取水灌田的工具.据史料记载,水车发明于隋而盛于唐,距今已有1000多年的历史,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为的水车,一个水斗从点出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过秒后,水斗旋转到点,设点的坐标为,其纵坐标满足(,,),则下列叙述正确的是().A.B.当时,函数单调递增C.当时,的最大值为D.当时,.三、填空题9.某地一天0~24时的气温y(单位:℃)与时间t(单位:h)的关系满足函数,则这一天的最低气温是____________℃.10.如表给出的是某港口在某季节每天几个时刻的水深关系.时刻水深5.07.05.03.05.07.05.03.05.0若该港口的水深和时刻的关系可用函数(其中)来近似描述,则该港口在11:00的水深为________m.四、解答题11.海水具有周期现象,某海滨浴场内水位y(单位:m)是时间t(,单位:h)的函数,记作,下面是某天水深的数据:t03691215182124y21.511.521.511.52经长期观察,的曲线可近似的满足函数.(1)根据以上数据,求出函数一个近似表达式;(2)一般情况下,水深超过1.25米该海滨浴场方可开放,另外,当水深超过1.75米时,由于安全原因,会被关闭,那么该海滨浴场在一天内的上午7:00到晚上19:00,有多长时间可以开放?12.如图,某港口一天6时到18时的水深变化曲线近似满足函数.(1)求的值;(2)求这段时间水深(单位:)的最大值.13.如图,摩天轮上一点P在时刻t(单位:分钟)距离地面的高度y(单位:米)满足,已知该摩天轮的半径为50米,圆心O距地面的高度为60米,摩天轮做匀速转动,每3分钟转一圈,点P的起始位置在摩天轮的最低点处.(1)根据条件写出y关于t的函数解析式;(2)在摩天轮转动的一圈内,有多长时间点P距离地面的高度超过85米?14.如图,在扇形中,,半径.在弧上取一点C,向半径、分别作垂线,与线段、分别相交于D、E,得到一个四边形.(1)设,将四边形的面积S表示成x的函数;(2)求四边形的面积S的最大值.15.随着人们物质和文化生活水平的提高,旅游业也逐渐兴旺起来.经过调查研究,在某个风景区,每年到访的游客人数会发生周期性的变化.现假设该风景区每年各个月份游客的人数(单位:万人)可近似地用函数来刻画.其中:正整数表示月份且,例如时表示二月份;和是正整数;.统计发现,风景区每年各个月份游客人数有以下规律:①每一年相同的月份,该风景区游客人数大致相同;②该景区游客人数最多的八月份和最少的二月份相差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论