版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专项17旋转中的几何模型归类(3大类型)类型一:“手拉手”模型模型特征:两个等边三角形或等腰直角三角形或正方形共顶点。模型说明:如图1,▲ABE,▲ACF都是等边三角形,可证▲AEC≌▲ABF。如图2,▲ABD,▲ACE都是等腰直角三角形,可证▲ADC≌▲ABE如图2,四边形ABEF,四边形ACHD都是正方形,可证▲ABD≌▲AFC类型二:“半角”模型模型特征:大角含半角+有相等的边,通过旋转“使相等的边重合,拼出特殊角”模型说明:(1)如图,在正方形ABCD中,∠EAF=45°,将▲ADF绕点A顺时针旋转90°,得到▲ABG可证▲AEF≌AEG,所以可到DF+BE=EF(2)如图,在等腰直角▲ABC中,∠MAN=45°,将▲ACN绕点A顺时针旋转90°,得到▲ABQ,可证▲AMN≌▲AMQ,所以可得CN²+BM²=MN²(3)如图,等腰▲ABC中,AB=BC,∠DBE=将▲CBD绕点B逆时针旋转∠CBA的度数得到▲ABD’可证▲DBE≌▲D’BE。类型三:构造旋转模型解题方法指导:若一个图形中含有相等的线段和特殊的角度,通常是以等线段的公共端点为旋转中心进行旋转,使得相等的边重合,得出特殊的图形.常见图形旋转:(1)“等边三角形”的旋转方法归纳:将等边三角形内的一个小三角形,旋转60度,从而使小三角形的一边与原等边三角形的边重合,连接小三角形的钝角顶点,得三角形.通过旋转将不相关的线段转化到同一个三角形中,将分散的已知条件集中起来,使问题得以解决.【考点1“手拉手”模型】【典例1】(2021春•西安期末)如图,在△ABC中,BC=5,以AC为边向外作等边△ACD,以AB为边向外作等边△ABE,连接CE、BD.(1)若AC=4,∠ACB=30°,求CE的长;(2)若∠ABC=60°,AB=3,求BD的长.【变式11】(2021秋•荔湾区校级期中)以△ABC的AB,AC为边分别作正方形ADEB,正方形ACGF,连接DC,BF.(1)CD与BF有什么数量与位置关系?说明理由.(2)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的.【变式12】(2021九上·吉林期末)如图①,在△ABC中,∠C=90°,AC=BC=6,点D,E分别在边AC,BC上,且CD=CE=2,此时AD=BE,(1)将△CDE绕点C逆时针旋转90°时,在图②中补充图形,并直接写出BE的长度;(2)当△CDE绕点C逆时针旋转一周的过程中,AD与BE的数量关系和位置关系是否仍然成立?若成立,请你利用图③证明,若不成立请说明理由;(3)将△CDE绕点C逆时针旋转一周的过程中,当A,D,E三点在同一条直线上时,请直接写出AD的长度.【考点2“半角”模型】【典例2】(2017秋•锦江区期末)在△ABC中,AB=AC,点E,F是边BC所在直线上与点B,C不重合的两点.(1)如图1,当∠BAC=90°,∠EAF=45°时,直接写出线段BE,CF,EF的数量关系;(不必证明)(2)如图2,当∠BAC=60°,∠EAF=30°时,已知BE=3,CF=5,求线段EF的长度;(3)如图3,当∠BAC=90°,∠EAF=135°时,请探究线段CE,BF,EF的数量关系,并证明.【变式21】(2021春•金牛区校级期中)类比探究:(1)如图1,等边△ABC内有一点P,若AP=8,BP=15,CP=17,求∠APB的大小;(提示:将△ABP绕顶点A旋转到△ACP′处)(2)如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°.求证:EF2=BE2+FC2;(3)如图3,在△ABC中,∠C=90°,∠ABC=30°,点O为△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,若AC=1,求OA+OB+OC的值.【变式22】(2022春•西山区校级月考)如图,已知正方形ABCD,点E、F分别是AB、BC边上,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:△EDF≌△MDF;(2)若正方形ABCD的边长为5,AE=2时,求EF的长?【变式23】(2022春•路北区期末)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.(1)求证:GE=FE;(2)若DF=3,求BE的长为.【变式24】(2021秋•山西期末)阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为45°的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:如图1,在正方形ABCD中,以A为顶点的∠EAF=45°,AE、AF与BC、CD边分别交于E、F两点.易证得EF=BE+FD.大致证明思路:如图2,将△ADF绕点A顺时针旋转90°,得到△ABH,由∠HBE=180°可得H、B、E三点共线,∠HAE=∠EAF=45°,进而可证明△AEH≌△AEF,故EF=BE+DF.任务:如图3,在四边形ABCD中,AB=AD,∠B=∠D=90°,∠BAD=120°,以A为顶点的∠EAF=60°,AE、AF与BC、CD边分别交于E、F两点.请参照阅读材料中的解题方法,你认为结论EF=BE+DF是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.【考点3构造旋转模型解题】【典例3】(2017九上·江津期中)请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为7,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=5,BP=2,PC=1.求∠BPC度数的大小和正方形ABCD的边长.【变式31】(2020九上·南昌月考)如图,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1,求∠BPC的度数和等边三角形ABC【变式32】(2021九上·德州期中)当图形具有邻边相等的特征时,我们可以把图形的一部分绕着公共端点旋转,这样将分散的条件集中起来,从而达到解决问题的目的.(1)如图1,等腰直角三角形ABC内有一点P,连接AP,BP,CP,∠APB=135°,为探究AP,BP,CP三条线段间的数量关系,我们可以将△ABP,绕点A逆时针旋转90°得到△ACP',连接PP',则PP'=AP,△CPP'是三角形,AP,BP,CP三条线段的数量关系是.(2)如图2,等边三角形ABC内有一点P,连接AP、BP、CP,∠APB=150°,请借助第一问的方法探究AP、BP、CP三条线段间的数量关系.(3)如图3,在四边形ABCD中,AD∥BC,点P在四边形的内部,且PD=PC,∠CPD=90°,∠APB=135°,AD=4,BC=5,请直接写出AB的长.1.(2021九上·鲅鱼圈期中)△ABC与△CDE都是等边三角形,连接AD、BE.(1)如图①,当点B、C、D在同一条直线上时,则∠BCE=度;(2)将图①中的△CDE绕着点C逆时针旋转到如图②的位置,求证:AD=BE.2.(2021九上·宜春期末)如图(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:①∠ACB的度数为;②线段BE,CE与AE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上.若CE=2,BE=2(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.3.(2021秋•夏河县期中)已知△ABC为等边三角形.(1)如图,P为△ABC外一点,∠BPC=120°,连接PA,PB,PC,求证:PB+PC=PA;(2)如图,P为△ABC内一点,若PA=12,PB=5,PC=13,求∠APB的度数.4.(2021九上·伊通期末)如图,已知正方形ABCD的边长为6,E,F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=MF;(2)若AE=2,求FC的长.5.(2019九上·西城期中)在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到AE,连结EC.如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图1,请你判断线段CE、BD之间的位置和数量关系(直接写出结论);②当点D在线段BC的延长线上时,请你在图2画出图形,判断①中的结论是否仍然成立,并证明你的判断.6.(2022春•临渭区期末)数学探究课上老师出了这样一道题:“如图,等边△ABC中有一点P,且PA=3,PB=4,PC=5,试求∠APB的度数.”小明和小军探讨时发现了一种求∠APB度数的方法,下面是这种方法的一部分思路,请按照下列思路要求画图或判断.(1)在图中画出△APC绕点A顺时旋转60°后的△AP1B,并判断△AP1P的形状是;(2)试判断△BP1P的形状,并说明理由;(3)由(1)、(2)两问可知:∠APB.7.(2022春•丹江口市期末)(1)如图1,已知,正方形ABCD和正方形CEFG,点G在BC延长线上,点E在CD边上,则BE与DG的数量关系为,BE与DG的位置关系为;(2)将(1)中的正方形CEFG绕点C旋转至图2时,(1)中的结论是否成立?若成立,请给以证明;若不成立,请说明理由;(3)若AB=5,CE=,在正方形CEFG绕点C旋转一周过程中,当A,F,G三点在一条直线上时,请画出图形,并直接写出AG长.8.(2021秋•十堰期末)正方形ABCD中,点F为正方形ABCD内的点,△BFC绕着点B按逆时针方向旋转90°后与△BEA重合.(1)如图①,若正方形ABCD的边长为2,BE=1,FC=,求证:AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.9.(2021秋•宁津县期末)如图,正方形ABCD中,点E,F分别为AB,AD的中点,以AE,AF为边作正方形AEGF.(1)在图1中,线段DF与CG之间有怎样的数量关系?说明理由;(2)在图2中,将正方形AEGF绕点A顺时针旋转一定角度(旋转角小于90°)后,得到正方形AE'G'F',连接DF',CG',则线段DF′与CG′之间的数量关系是否仍然成立,请说明理由.10.(2020秋•饶平县校级期末)如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO绕点B逆时针旋转60
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度农产品出口贸易合同
- 2024年度物流服务合同:二零二四年跨境电商物流配送服务协议
- 2024年度建筑工程二级建造师专项服务合同
- 管道龙头栓市场发展现状调查及供需格局分析预测报告
- 玫瑰油市场发展现状调查及供需格局分析预测报告
- 纸巾市场发展预测和趋势分析
- 2024年度娄桂离婚法律咨询服务合同
- 2024年度成都二手房产买卖合同范本
- 空气凝结器市场需求与消费特点分析
- 2024年度化工企业原材料采购合同
- 电子垃圾的再生设计(说课稿)-六年级下册劳动浙教版
- (完整版)一年级家长会PPT模板
- 展厅布置施工方案
- 《中华商业文化》第七章
- 积极心理学班主任案例4篇
- 第六章-机车转向架课件
- 思想道德与法治课程课件(绪论)
- 围手术期抗菌药物预防性应用管理制度
- 医患双方权利和义务课件
- 手术室专科护士培训计划
- 中医冬季养生课件整理
评论
0/150
提交评论