版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如右图要测量小河两岸相对的两点、的距离,可以在小河边取的垂线上的一点,测得米,,则小河宽为()A.米 B.米 C.米 D.米2.二次函数经过平移后得到二次函数,则平移方法可为()A.向左平移1个单位,向上平移1个单位B.向左平移1个单位,向下平移1个单位C.向右平移1个单位,向下平移1个单位D.向右平移1个单位,向上平移1个单位3.如图,是⊙上的点,则图中与相等的角是()A. B. C. D.4.定义新运算:对于两个不相等的实数,,我们规定符号表示,中的较大值,如:.因此,;按照这个规定,若,则的值是()A.-1 B.-1或 C. D.1或5.一元二次方程的解是()A.5或0 B.或0 C. D.06.如图,一次函数y=ax+a和二次函数y=ax2的大致图象在同一直角坐标系中可能的是()A. B.C. D.7.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A.110 B.19 C.18.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位9.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形 B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形 D.有一个角是直角的平行四边形是正方形10.抛物线的顶点坐标为()A. B. C. D.二、填空题(每小题3分,共24分)11.底面半径为1,母线长为2的圆锥的侧面积等于.12.如图所示,已知中,,边上的高,为上一点,,交于点,交于点,设点到边的距离为.则的面积关于的函数图象大致为__________.13.定义:在平面直角坐标系中,我们将函数的图象绕原点逆时针旋转后得到的新曲线称为“逆旋抛物线”.(1)如图①,己知点,在函数的图象上,抛物线的顶点为,若上三点、、是、、旋转后的对应点,连结,、,则__________;(2)如图②,逆旋抛物线与直线相交于点、,则__________.14.如图,抛物线与轴的负半轴交于点,与轴交于点,连接,点分别是直线与抛物线上的点,若点围成的四边形是平行四边形,则点的坐标为__________.15.下表是某种植物的种子在相同条件下发芽率试验的结果.种子个数100400900150025004000发芽种子个数92352818133622513601发芽种子频率0.920.880.910.890.900.90根据上表中的数据,可估计该植物的种子发芽的概率为________.16.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为_____.17.如图,已知一次函数y=kx-4的图象与x轴、y轴分别交于A、B两点,与反比例函数在第一象限内的图象交于点C,且A为BC的中点,则k=________.18.正五边形的每个内角为______度.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.20.(6分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.21.(6分)如图,在足够大的空地上有一段长为米的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中,已知矩形菜园的一边靠墙,另三边一共用了米木栏.(1)若米,所围成的矩形菜园的面积为平方米,求所利用旧墙的长;(2)若米,求矩形菜园面积的最大值.22.(8分)在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.23.(8分)为增强中学生体质,篮球运球已列为铜陵市体育中考选考项目,某校学生不仅练习运球,还练习了投篮,下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.投篮次数(n)50100150200250300500投中次数(m)286078104124153252(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?24.(8分)在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠的拼成如图2所示的“”形状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知,,.求(1)线段与的差值是___(2)的长度.25.(10分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点M的坐标(x,y).(1)写出点M所有可能的坐标;(2)求点M在直线上的概率.26.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据锐角三角函数的定义即可得出结论.【详解】解:在Rt△ACP中,tan∠ACP=∴米故选A.【点睛】此题考查是解直角三角形,掌握锐角三角函数的定义是解决此题的关键.2、D【分析】解答本题可根据二次函数平移的特征,左右平移自变量x加减(左加右减),上下平移y加减(下加上减),据此便能得出答案.【详解】由得平移方法可为向右平移1个单位,向上平移1个单位故答案为:D.【点睛】本题考查了二次函数的平移问题,掌握次函数的平移特征是解题的关键.3、D【分析】直接利用圆周角定理进行判断.【详解】解:∵与都是所对的圆周角,∴.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、B【分析】分x>0和0x<0两种情况分析,利用公式法解一元二次方程即可.【详解】解:当x>0时,有,解得,(舍去),
x<0时,有,解得,x1=−1,x2=2(舍去).故选B.【点睛】此题主要考查了一元二次方程的解法,解题的关键是掌握新定义以及掌握因式分解法以及公式法解方程的方法步骤,掌握降次的方法,把二次化为一次,再解一元一次方程.5、B【解析】根据因式分解法即可求出答案.【详解】∵5x2=x,∴x(5x﹣1)=0,∴x=0或x.故选:B.【点睛】本题考查了一元二次方程,解答本题的关键是熟练运用一元二次方程的解法,本题属于基础题型.6、B【分析】根据a的符号分类,当a>0时,在A、B中判断一次函数的图象是否相符;当a<0时,在C、D中判断一次函数的图象是否相符.【详解】解:①当a>0时,二次函数y=ax2的开口向上,一次函数y=ax+a的图象经过第一、二、三象限,A错误,B正确;②当a<0时,二次函数y=ax2的开口向下,一次函数y=ax+a的图象经过第二、三、四象限,C错误,D错误.故选:B.【点睛】此题主要考查了二次函数与一次函数的图象,利用二次函数的图象和一次函数的图象的特点求解.7、A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.考点:概率.8、A【解析】试题分析:根据抛物线的平移规律即可得答案,故答案选A.考点:抛物线的平移规律.9、A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.10、D【解析】根据抛物线顶点式的性质进行求解即可得答案.【详解】∵解析式为∴顶点为故答案为:D.【点睛】本题考查了已知二次函数顶点式求顶点坐标,注意点坐标符号有正负.二、填空题(每小题3分,共24分)11、.【解析】根据圆锥的侧面积就等于母线长乘底面周长的一半,依此公式计算即可:圆锥的侧面积.12、抛物线y=-x2+6x.(0<x<6)的部分.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】解:过点A向BC作AH⊥BC于点H,∵∴△AEF∽△ABC∴即,∴y=×2(6-x)x=-x2+6x.(0<x<6)∴该函数图象是抛物线y=-x2+6x.(0<x<6)的部分.故答案为:抛物线y=-x2+6x.(0<x<6)的部分.【点睛】此题考查相似三角形的判定和性质,根据几何图形的性质确定函数的图象能力.要能根据函数解析式及其自变量的取值范围分析得出所对应的函数图像的类型和所需要的条件,结合实际意义分析得解.13、3;【分析】(1)求出点A、B的坐标,再根据割补法求△ABC的面积即可得到;
(2)将旋转后的MN和抛物线旋转到之前的状态,求出直线解析式及交点坐标,利用割补法求面积即可.【详解】解:(1)在上,令x=0,解得y=2,所以C(0,2),OC=2,将,代入,解得a=3,b=2,∴,,设,的直线解析式为,则,解得,直线AB解析式为,令x=0,解得,y=4,即OD=4,∴,∴(2)如图,由旋转知,,,∴,,直线,令,得∴∴∴【点睛】此题考查了二次函数与几何问题相结合的问题,将三角形的面积转化为解题关键.14、或或【分析】根据二次函数与x轴的负半轴交于点,与轴交于点.直接令x=0和y=0求出A,B的坐标.再根据平行四边形的性质分情况求出点E的坐标.【详解】由抛物线的表达式求得点的坐标分别为.由题意知当为平行四边形的边时,,且,∴线段可由线段平移得到.∵点在直线上,①当点的对应点为时,如图,需先将向左平移1个单位长度,此时点的对应点的横坐标为,将代入,得,∴.②当点A的对应点为时,同理,先将向右平移2个单位长度,可得点的对应点的横坐标为2,将代入得,∴当为平行四边形的对角线时,可知的中点坐标为,∵在直线上,∴根据对称性可知的横坐标为,将代入得,∴.综上所述,点的坐标为或或.【点睛】本题是二次函数的综合题,主要考查了特殊点的坐标的确定,平行四边形的性质,解本题的关键是分情况解决问题的思想.15、0.1【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.1左右,从而得到结论.【详解】由表格可得,当实验次数越来越多时,发芽种子频率稳定在0.1,符合用频率佔计概率,∴种子发芽概率为0.1.故答案为:0.1.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.16、【解析】试题解析:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长=,故答案为.17、4【详解】把x=0代入y=kx-4,得y=-4,则B的坐标为(0,-4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入,得x=2,∴C点的坐标为(2,4),把C(2,4)的坐标代入y=kx-4,得2k-4=4,解得k=4,故答案为4.18、1【分析】先求出正五边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=1°.故答案为:1.【点睛】本题主要考查多边形的内角和计算公式,以及正多边形的每个内角都相等等知识点.三、解答题(共66分)19、(1)见解析;(2)见解析【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线;(2)根据HL先证明Rt△BDE≌Rt△DCF,再根据全等三角形对应边相等及切线的性质得出AB=AF,即可得出AB+BE=AC.【详解】证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;以及及全等三角形的判断与性质,角平分线的性质等.20、(1)证明见解析;(2)AD=2.【解析】(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.【详解】(1)如图,连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.21、(1)的长为;(2)当时,矩形菜园面积的最大值为.【分析】(1)设AB=xm,则BC=(100-2x)m,列方程求解即可;
(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【详解】(1)设AB=,则BC,根据题意得,解得,,当时,,不合题意舍去;当时,,答:AD的长为;(2)设AD=,∴则时,的最大值为;答:当时,矩形菜园面积的最大值为.【点睛】本题考查了一元二次方程和二次函数在实际问题中的应用,根据题意正确列式并明确二次函数的相关性质,是解题的关键.22、两次摸到的球都是红球的概率为.【分析】根据题意画出树状图,再根据概率公式即可求解.【详解】解:画树状图得:∵共有9种等可能的结果,摸到的两个球都是红球的有1种情况,∴两次摸到的球都是红球的概率=.【点睛】此题主要考查概率的计算,解题的关键是根据题意画出所有情况,再用公式进行求解.23、(1)约0.5;(2)估计这名同学投篮622次,投中的次数约是311次.【分析】(1)对于不同批次的定点投篮命中率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法;
(2)投中的次数=投篮次数×投中的概率,依此列式计算即可求解.【详解】解:(1)估计这名球员投篮一次,投中的概率约是;(2)622×0.5=311(次).故估计这名同学投篮622次,投中的次数约是311次.【点睛】本题考查频率估计概率,解题的关键是掌握频率估计概率.24、96【分析】如图1,延长FG交BC于H,设CE=x,则E'H'=CE=x,根据轴对称的性质得:D'E'=DC=E'F'=9,表示GH,EH,BE的长,证明△EGH∽△EAB,则,可得x的值,即可求出线段、及FG的长,故可求解.【详解】(1)如图1,延长FG交BC于H,设CE=x,则E'H'=CE=x,由轴对称的性质得:D'E'=DC=E'F'=9,∴H'F'=AF=9+x,∵AD=BC=16,∴DF=16−(9+x)=7−x,即C'D'=DF=7−x=F'G',∴FG=7−x,∴GH=9−(7−x)=2+x,EH=16−x−(9+x)=7−2x,∴EH∥AB,∴△EGH∽△EAB,∴,∴,解得x=1或31(舍),、及FG∴AF=9+x=10,EC=1,故AF-EC=9故答案为:9;(2)由(1)得FG=7−x=7-1=6.【点睛】本题考查了图形的拼剪,轴对称的性质,矩形、直角三角形、相似三角形等相关知识,积累了将实际问题转化为数学问题经验,渗透了数形结合的思想,体现了数学思想方法在现实问题中的应用价值.25、点M坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).(2).【解析】试题分析:(1)通过列表展示所有9种等可能的结果数;
(2)找出满足点落在函数的图象上的结果数,然后根据概率公式求解.试题解析:(1)列表如下:yx1230(0,1)(0,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国矩型波纹补偿器行业投资前景及策略咨询研究报告
- 2024至2030年中国特殊油封数据监测研究报告
- 2024至2030年中国开关接插键数据监测研究报告
- 2024至2030年中国塑料断路器行业投资前景及策略咨询研究报告
- 《恶意代码基础与防范(微课版)》 课件 第8章 勒索型恶意代码
- 浙江省宁波市镇海区部分学校2024-2025学年二年级上学期期中语文试卷
- 医改护理培训
- 产品工厂直供合同范例
- 木制钓鱼艇转让合同模板
- 生态园区卫生员招聘协议样本
- 供电中心变电站考核标准
- 上海2023年上海证券交易所社会招聘笔试历年典型考题及考点附答案解析
- 【贵州茅台公司基于近五年数据的财务报表探析案例(定量论文)7000字】
- GB/T 43988-2024滑板课程学生运动能力测评规范
- 危险化学品安全技术说明书(MSDS)(包含常见34种)
- 智能云服务交付工程师认证考试题库(网大版)(浓缩500题)
- 四种形态课件
- DL-T5054-2016火力发电厂汽水管道设计规范
- 交响音乐赏析智慧树知到期末考试答案章节答案2024年西安交通大学
- 兽医产科学 知到智慧树网课答案
- 计算机网络技术大学生职业生涯规划
评论
0/150
提交评论