重庆中考数学模拟考试题一(含答案)_第1页
重庆中考数学模拟考试题一(含答案)_第2页
重庆中考数学模拟考试题一(含答案)_第3页
重庆中考数学模拟考试题一(含答案)_第4页
重庆中考数学模拟考试题一(含答案)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

...wd......wd......wd...最新2018年重庆中考数学模拟试卷一〔含答案〕一、选择题1.﹣2017的相反数是〔〕A.﹣2017B.2017C.﹣D.2.在以下奢侈品牌的标志中,是轴对称图形的是〔〕A.B.C.D.3.〔a2〕3÷a4的计算结果是〔〕A.aB.a2C.a4D.a54.以下调查中不适合抽样调查的是〔〕A.调查“华为P10〞手机的待机时间B.了解初三〔10〕班同学对“EXO〞的喜爱程度C.调查重庆市面上“奶牛梦工场〞皇室尊品酸奶的质量D.了解重庆市初三学生中考后毕业旅行方案5.估算的运算结果应在〔〕A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.假设代数式有意义,则x的取值范围是〔〕A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠27.如图,△ABC的三个顶点都在⊙O上,AD是直径,且∠CAD=56°,则∠B的度数为〔〕A.44°B.34°C.46°D.56°8.△ABC∽△DEF,S△ABC:S△DEF=1:9,假设BC=1,则EF的长为〔〕A.1B.2C.3D.99.假设〔x﹣1〕2=2,则代数式2x2﹣4x+5的值为〔〕A.11B.6C.7D.810.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有〔〕和黑子.A.37B.42C.73D.12111.“星光隧道〞是贯穿新牌坊商圈和照母山以北的高端居住区的重要纽带,预计2017年底竣工通车,图中线段AB表示该工程的局部隧道,无人勘测飞机从隧道一侧的点A出发,沿着坡度为1:2的路线AE飞行,飞行至分界点C的正上方点D时,测得隧道另一侧点B的俯角为12°,继续飞行到点E,测得点B的俯角为45°,此时点E离地面高度EF=700米,则隧道BC段的长度约为〔〕米.〔参考数据:tan12°≈0.2,cos12°≈0.98〕A.2100B.1600C.1500D.154012.假设数a使关于x的不等式组无解,且使关于x的分式方程有正整数解,则满足条件的a的值之积为〔〕A.28B.﹣4C.4D.﹣2二、填空题13.截止5月17日,检察反腐力作《人民的名义》在爱奇艺上的点播量约为6820000000次,请将6820000000用科学记数法表示为________.14.计算:=________.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB于点E,以点O为圆心,OC的长为半径作弧CD交OB于点D,假设OA=4,则阴影局部的面积为________.16.“一带一路〞国际合作顶峰论坛于5月14日在北京开幕,学校在初三年级随机抽取了50名同学进展“一带一路〞知识竞答,并将他们的竞答成绩绘制成如图的条形统计图,本次知识竞答成绩的中位数是________分.17.5月13日,周杰伦2017“地表最强〞世界巡回演唱会在奥体中心盛大举行,1号巡逻员从舞台走往看台,2号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1分钟后,1号巡逻员发现对讲机遗忘在出发地,便立即返回出发地,拿到对讲机后〔取对讲机时间不计〕立即再从舞台走往看台,结果1号巡逻员先到达看台,2号巡逻员继续走到舞台,设2号巡逻员的行驶时间为x〔min〕,两人之间的距离为y〔m〕,y与x的函数图象如以以下图,则当1号巡逻员到达看台时,2号巡逻员离舞台的距离是________米.18.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=,AE=8,则S四边形EFMG=________.三、解答题19.如图,EF∥AD,∠1=∠2,∠BAC=87°,求你∠AGD的度数.20.巴蜀中学2017春季运动会的开幕式精彩纷呈,主要分为以下几个类型:A文艺范、B动漫潮、C学院派、D民族风,为了解未能参加运动会的初三学子对开幕式类型的喜好情况,学生处在初三年级随机抽取了一局部学生进展调查,并将他们喜欢的种类绘制成如下统计图,请你根据统计图解答以下问题:〔1〕请补全折线统计图,并求出“动漫潮〞所在扇形的圆心角度数.〔2〕据统计,在被调查的学生中,喜欢“文艺范〞类型的仅有2名住读生,其余均为走读生,初二年级欲从喜欢“文艺范〞的这几名同学中随机抽取两名同学去观摩“文明礼仪大赛〞视频,用列表法或树状图的方法求出所选的两名同学都是走读生的概率.21.化简以下各式:〔1〕〔b+2a〕〔2a﹣b〕﹣3〔2a﹣b〕2;〔2〕.四、解答题22.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数〔m≠0〕的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为〔12,n〕,OA=10,E为x轴负半轴上一点,且tan∠AOE=.〔1〕求该反比例函数和一次函数的解析式;〔2〕延长AO交双曲线于点D,连接CD,求△ACD的面积.23.“父母恩深重,恩怜无歇时〞,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会方案采购一批鲜花礼盒赠送给妈妈们.〔1〕经过和花店卖家议价,可在原标价的根基上打八折购进,假设在花店购置80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;〔用不等式解答〕〔2〕后来学生会了解到通过“群众点评〞或“美团〞同城配送会在〔1〕中花店最高售价的根基上降价25%,学生会方案在这两个网站上分别购置一样数量的礼盒,但实际购置过程中,“群众点评〞网上的购置价格比原有价格上涨m%,购置数量和原方案一样:“美团〞网上的购置价格比原有价格下降了m元,购置数量在原方案根基上增加15m%,最终,在两个网站的实际消费总额比原方案的预算总额增加了m%,求出m的值.24.如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.〔1〕假设AB=3,AD=,求△BMC的面积;〔2〕点E为AD的中点时,求证:AD=BN.25.对于一个三位正整数t,将各数位上的数字重新排序后〔包括本身〕,得到一个新的三位数〔a≤c〕,在所有重新排列的三位数中,当|a+c﹣2b|最小时,称此时的为t的“最优组合〞,并规定F〔t〕=|a﹣b|﹣|b﹣c|,例如:124重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124为124的“最优组合〞,此时F〔124〕=﹣1.〔1〕三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F〔t〕=0;〔2〕一个正整数,由N个数字组成,假设从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数〞.例如:123的第一位数1能披1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数〞.假设三位“善雅数〞m=200+10x+y〔0≤x≤9,0≤y≤9,x、y为整数〕,m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数〞中F〔m〕的最大值.26.如图1,在平面直角坐标系中,抛物线与x轴交于点A、B两点〔点A在点B的左侧〕,与y轴交于点C,过点C作CD∥x轴,且交抛物线于点D,连接AD,交y轴于点E,连接AC.〔1〕求S△ABD的值;〔2〕如图2,假设点P是直线AD下方抛物线上一动点,过点P作PF∥y轴交直线AD于点F,作PG∥AC交直线AD于点G,当△PGF的周长最大时,在线段DE上取一点Q,当PQ+QE的值最小时,求此时PQ+QE的值;〔3〕如图3,M是BC的中点,以CM为斜边作直角△CMN,使CN∥x轴,MN∥y轴,将△CMN沿射线CB平移,记平移后的三角形为△C′M′N′,当点N′落在x轴上即停顿运动,将此时的△C′M′N′绕点C′逆时针旋转〔旋转度数不超过180°〕,旋转过程中直线M′N′与直线CA交于点S,与y轴交于点T,与x轴交于点W,请问△CST是否能为等腰三角形假设能,请求出所有符合条件的WN′的长度;假设不能,请说明理由.二圣学校2018年中考数学模拟试卷一〔第三周〕一、选择题1.﹣2017的相反数是〔B〕A.﹣2017B.2017C.﹣D.2.在以下奢侈品牌的标志中,是轴对称图形的是〔C〕A.B.C.D.3.〔a2〕3÷a4的计算结果是〔B〕A.aB.a2C.a4D.a54.以下调查中不适合抽样调查的是〔B〕A.调查“华为P10〞手机的待机时间B.了解初三〔10〕班同学对“EXO〞的喜爱程度C.调查重庆市面上“奶牛梦工场〞皇室尊品酸奶的质量D.了解重庆市初三学生中考后毕业旅行方案5.估算的运算结果应在〔D〕A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.假设代数式有意义,则x的取值范围是〔D〕A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠27.如图,△ABC的三个顶点都在⊙O上,AD是直径,且∠CAD=56°,则∠B的度数为〔B〕A.44°B.34°C.46°D.56°8.△ABC∽△DEF,S△ABC:S△DEF=1:9,假设BC=1,则EF的长为〔C〕A.1B.2C.3D.99.假设〔x﹣1〕2=2,则代数式2x2﹣4x+5的值为〔C〕A.11B.6C.7D.810.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有〔C〕和黑子.A.37B.42C.73D.121解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.11.“星光隧道〞是贯穿新牌坊商圈和照母山以北的高端居住区的重要纽带,预计2017年底竣工通车,图中线段AB表示该工程的局部隧道,无人勘测飞机从隧道一侧的点A出发,沿着坡度为1:2的路线AE飞行,飞行至分界点C的正上方点D时,测得隧道另一侧点B的俯角为12°,继续飞行到点E,测得点B的俯角为45°,此时点E离地面高度EF=700米,则隧道BC段的长度约为〔C〕米.〔参考数据:tan12°≈0.2,cos12°≈0.98〕A.2100B.1600C.1500D.1540解:由题意得,∠EBF=45°,EF=700米,∴BF=EF=700米,∵AE的坡度为1:2,∴AF=2EF=1400米,∴AB=1400+700=2100米,设CD=x米,∵AE的坡度为1:2,∴AC=2CD=2x米,∵∠DBC=12°,tan12°≈0.2=,∴BC=5CD=5x米,则7x=2100,解得,x=300米,∴AC=600米,BC=1500米;12.假设数a使关于x的不等式组无解,且使关于x的分式方程有正整数解,则满足条件的a的值之积为〔B〕A.28B.﹣4C.4D.﹣2解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即〔a+3〕x=10,由分式方程有正整数解,得到x=,即a+3=1,2,10,解得:a=﹣2,2,7.综上,满足条件a的为﹣2,2,之积为﹣4,二、填空题13.截止5月17日,检察反腐力作《人民的名义》在爱奇艺上的点播量约为6820000000次,请将6820000000用科学记数法表示为_6.82×10914.计算:=__﹣5______.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB于点E,以点O为圆心,OC的长为半径作弧CD交OB于点D,假设OA=4,则阴影局部的面积为__连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-〔S扇形AOE-S△COE〕===.16.“一带一路〞国际合作顶峰论坛于5月14日在北京开幕,学校在初三年级随机抽取了50名同学进展“一带一路〞知识竞答,并将他们的竞答成绩绘制成如图的条形统计图,本次知识竞答成绩的中位数是___47.5_____分.17.5月13日,周杰伦2017“地表最强〞世界巡回演唱会在奥体中心盛大举行,1号巡逻员从舞台走往看台,2号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1分钟后,1号巡逻员发现对讲机遗忘在出发地,便立即返回出发地,拿到对讲机后〔取对讲机时间不计〕立即再从舞台走往看台,结果1号巡逻员先到达看台,2号巡逻员继续走到舞台,设2号巡逻员的行驶时间为x〔min〕,两人之间的距离为y〔m〕,y与x的函数图象如以以下图,则当1号巡逻员到达看台时,2号巡逻员离舞台的距离是________米.解:由图象可得2号巡逻员的速度为1000÷12.5=80m/min,1号巡逻员的速度为〔1000﹣800〕÷1﹣80=200﹣80=120m/min,设两车相遇时的时间为xmin,可得方程:80x+120〔x﹣2〕=800+200,解得:x=6.2,∴x=6.2,∴2号巡逻员的路程为6.2×80=496m,1号巡逻员到达看台时,还需要=min,∴2号巡逻员离舞台的距离是1000﹣80×〔6.2+〕=m,18.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=,AE=8,则S四边形EFMG=________.解:过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°,∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°,∵∠EGB=∠CGB,BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP,∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE〔HL〕,∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP=∠ABC=45°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形,∵BM=,∴BN=NM==,∴BE=,∵AE=8,∴DE=12﹣8=4,由勾股定理得:AB===12,设BF=x,则EF=x,AF=12﹣x,由勾股定理得:x2=82+〔12﹣x〕2,x=,∴BF=EF=,∵△ABE≌△PBE,∴EP=AE=8,BP=AB=12,同理可得:PG=,Rt△EFN中,FN==,∴S四边形EFMG=S△EFN+S△EBG﹣S△BNM=FN•EN+EG•BP﹣BN•NM=××+〔8+〕×12﹣××=..19.如图,EF∥AD,∠1=∠2,∠BAC=87°,求你∠AGD的度数.解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB∥DG〔内错角相等,两直线平行〕,∴∠BAC+∠AGD=180°〔两直线平行,同旁内角互补〕,∵∠BAC=87°,∴∠AGD=93°.20.巴蜀中学2017春季运动会的开幕式精彩纷呈,主要分为以下几个类型:A文艺范、B动漫潮、C学院派、D民族风,为了解未能参加运动会的初三学子对开幕式类型的喜好情况,学生处在初三年级随机抽取了一局部学生进展调查,并将他们喜欢的种类绘制成如下统计图,请你根据统计图解答以下问题:〔1〕请补全折线统计图,并求出“动漫潮〞所在扇形的圆心角度数.〔2〕据统计,在被调查的学生中,喜欢“文艺范〞类型的仅有2名住读生,其余均为走读生,初二年级欲从喜欢“文艺范〞的这几名同学中随机抽取两名同学去观摩“文明礼仪大赛〞视频,用列表法或树状图的方法求出所选的两名同学都是走读生的概率.解:〔1〕被调查的学生数为;20÷50%=40人,A文艺范人数=40×12.5%=5人,B动漫潮人数=40﹣5﹣5﹣20=10人,补全折线统计图如以以下图,“动漫潮〞所在扇形的圆心角度数=360°×=90°;〔2〕设2名住读生为A1,A2,走读生为B1,B2,B3画树状图如以以下图,由树状图得知,所有等可能的情况有20种,其中所选两位同学恰好都是都是走读生的情况有6种,∴所选的两名同学都是走读生的概率==.21.〔1〕〔b+2a〕〔2a﹣b〕﹣3〔2a﹣b〕2;〔2〕.解:〔1〕原式=4a2﹣b2﹣12a2+12ab﹣3b2=﹣8a2+12ab﹣4b2;〔2〕原式====.22.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数〔m≠0〕的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为〔12,n〕,OA=10,E为x轴负半轴上一点,且tan∠AOE=.〔1〕求该反比例函数和一次函数的解析式;〔2〕延长AO交双曲线于点D,连接CD,求△ACD的面积.解:〔1〕如图,过A作AF⊥x轴于F,∵OA=10,tan∠AOE=,∴可设AF=4a,OF=3a,则由勾股定理可得:〔3a〕2+〔4a〕2=102,解得a=2,∴AF=8,OF=6,∴A〔﹣6,8〕,代入反比例函数,可得m=﹣48,∴反比例函数解析式为:,把点B〔12,n〕代入,可得n=﹣4,∴B〔12,﹣4〕,设一次函数的解析式为y=kx+b,则,解得:,∴一次函数的解析式为;〔2〕在一次函数中,令y=0,则x=6,即C〔6,0〕,∵A〔﹣6,8〕与点D关于原点成中心对称,∴D〔6,﹣8〕,∴CD⊥x轴,∴S△ACD=S△ACO+S△CDO=CO×AF+CO×CD=×6×8+×6×8=48.23.“父母恩深重,恩怜无歇时〞,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会方案采购一批鲜花礼盒赠送给妈妈们.〔1〕经过和花店卖家议价,可在原标价的根基上打八折购进,假设在花店购置80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;〔用不等式解答〕〔2〕后来学生会了解到通过“群众点评〞或“美团〞同城配送会在〔1〕中花店最高售价的根基上降价25%,学生会方案在这两个网站上分别购置一样数量的礼盒,但实际购置过程中,“群众点评〞网上的购置价格比原有价格上涨m%,购置数量和原方案一样:“美团〞网上的购置价格比原有价格下降了m元,购置数量在原方案根基上增加15m%,最终,在两个网站的实际消费总额比原方案的预算总额增加了m%,求出m的值.解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;〔2〕先假设学生会方案在这两个网站上分别购置的礼盒数为a个礼盒,表示在“群众点评〞网上的购置实际消费总额:120a〔1﹣25%〕〔1+m%〕,在“美团〞网上的购置实际消费总额:a[120〔1﹣25%〕﹣m]〔1+15m%〕;根据“在两个网站的实际消费总额比原方案的预算总额增加了m%〞列方程解出即可.试题解析:〔1〕解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120〔元〕.答:每个礼盒在花店的最高标价是120元;〔2〕解:假设学生会方案在这两个网站上分别购置的礼盒数为a个礼盒,由题意得:120×0.8a〔1﹣25%〕〔1+m%〕+a[120×0.8〔1﹣25%〕﹣m]〔1+15m%〕=120×0.8a〔1﹣25%〕×2〔1+m%〕,即72a〔1+m%〕+a〔72﹣m〕〔1+15m%〕=144a〔1+m%〕,整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0〔舍〕,m2=20.答:m的值是20.24.如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.〔1〕假设AB=3,AD=,求△BMC的面积;〔2〕点E为AD的中点时,求证:AD=BN.解:〔1〕如图1中,在△ABM和△CAD中,∵AB=AC,∠BAM=∠ACD=90°,AM=CD,∴△ABM≌△CAD,∴BM=AD=,∴AM==1,∴CM=CA﹣AM=2,∴S△BCM=•CM•BA=×23=3.〔2〕如图2中,连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.∵AE=ED,∠ACD=90°,∴AE=CE=ED,∴∠EAC=∠ECA,∵△ABM≌△CAD,∴∠ABM=∠CAD,∴∠ABM=∠MCE,∵∠AMB=∠EMC,∴∠CEM=∠BAM=90°,∵△ABM∽△ECM,∴,∴,∵∠AME=∠BMC,∴△AME∽△BMC,∴∠AEM=∠ACB=45°,∴∠AEC=135°,易知∠PEQ=135°,∴∠PEQ=∠AEC,∴∠AEQ=∠EQC,∵∠P=∠EQC=90°,∴△EPA≌△EQC,∴EP=EQ,∵EP⊥BP,EQ⊥BC∴BE平分∠ABC,∴∠NBC=∠ABN=22.5°,∵AH垂直平分BC,∴NB=NC,∴∠NCB=∠NBC=22.5°,∴∠ENC=∠NBC+∠NCB=45°,∴△ENC的等腰直角三角形,∴NC=EC,∴AD=2EC,∴2NC=AD,∴AD=NC,∵BN=NC,∴AD=BN.25.对于一个三位正整数t,将各数位上的数字重新排序后〔包括本身〕,得到一个新的三位数〔a≤c〕,在所有重新排列的三位数中,当|a+c﹣2b|最小时,称此时的为t的“最优组合〞,并规定F〔t〕=|a﹣b|﹣|b﹣c|,例如:124重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124为124的“最优组合〞,此时F〔124〕=﹣1.〔1〕三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F〔t〕=0;〔2〕一个正整数,由N个数字组成,假设从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数〞.例如:123的第一位数1能披1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数〞.假设三位“善雅数〞m=200+10x+y〔0≤x≤9,0≤y≤9,x、y为整数〕,m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数〞中F〔m〕的最大值.〔1〕证明:∵三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,∴重新排序后:其中两个数位上数字的和是一个数位上的数字的2倍,∴a+c﹣2b=0,即〔a﹣b〕﹣〔b﹣c〕=0,∴F〔t〕=0;∵〔2〕∵m=200+10x+y是“善雅数〞,∴x为偶数,且2+x+y是3的倍数,∵x<10,y<10,∴2+x+y<30,∵m的各位数字之和为一个完全平方数,∴2+x+y=32=9,∴当x=0时,y=7,当x=2时,y=5,当x=4时,y=3,当x=6时,y=1,∴所有符合条件的“善雅数〞有:207,225,243,261,∴所有符合条件的“善雅数〞中F〔m〕的最大值是=|2﹣3|﹣|3﹣4|=0.26.如图1,在平面直角坐标系中,抛物线与x轴交于点A、B两点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论