数学-江苏省扬州市2024-2025学年高三上学期11月期中检测试题和答案_第1页
数学-江苏省扬州市2024-2025学年高三上学期11月期中检测试题和答案_第2页
数学-江苏省扬州市2024-2025学年高三上学期11月期中检测试题和答案_第3页
数学-江苏省扬州市2024-2025学年高三上学期11月期中检测试题和答案_第4页
数学-江苏省扬州市2024-2025学年高三上学期11月期中检测试题和答案_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024—2025学年第一学期期中检测高三数学参考答案123456789BDABCBCDABD15.【答案】(1)零假设为H0:该地居民喜欢喝茶与年龄没有关系.即没有90%的把握认为该地居民喜欢喝茶与年龄有关.···········所以X的分布列为:X012P494919··············································································································12分所以X的期望为.················································13分16.【答案】(1)f(x)=sin2xcosφ+cos2xsinφ=sin(2x+φ),又0<φ<,所以································所以f(x)的单调递增区间为.·······························(2)因为f(x)=sin(2x+τ)图象向右平移τ个单位得到y=sin[2(x−τ)+τ]=sin2x,再将y=sin2x图象上各个点横坐标变为原来2倍得到y=sinx,所以g(x)=sinx;·10分所以不等式为sin(2x+)<sinx,不等式化为cos2x<sinx,结合函数y=sinx在(0,τ)上的图象得τ<x<5τ,所以原不等式的解集为(,).···································································15分A1D1⊥平面ABB1A1,A1N平面ABB1A1,所以A1D1⊥A1N,所以QM⊥A1N,··································································2分BBQH=900,所以上A1HQ=900,即A1N⊥AQ;············································又AQ、AM平面AMQ,AQAM=A,所以A1N⊥平面AMQ.····················································································7分(2)方法一:在ΔANM中,过点N作NT丄AM于T,连HT.由(1)知NH⊥平面AMQ,故NH⊥AM,又NH、NT平面NHT,所以AM⊥平面NHT,所以AM⊥HT,所以上NTH为二面角N-AM-Q的平面角.······················································10分在Rt△A1B1N中,A1N=BH,Q所以A1H=所以NH=.···································································12分 55在Rt△AHT中,sin上QAM=所以,·············所以二面角N-AM-Q的正切值为.············································B1·B1NA1CDTHA1CDTHABzMD1MD1B1NQQAA1DDCyCyABx因为正方体棱长为2,M,N,Q分别为棱由(1)知A1N⊥平面AMQ.设m=(x222)是平面ANM的法向量,则,2z2所以cosA1N,mi==,所以二面角N-AM-Q的余弦值为,·····14分所以二面角N-AM-Q的正切值为.···········································所以cosB=0或者sinC=sinB.·········方法一:在△CBQ中,由正弦定理,得在△BPQ中,由正弦定理,得APQBC 2sinαcosα+ 2sinαcosα+2方法二:在△ABP中,由正弦定理,得所以 .方法三:在△CBQ中,由正弦定理,得所以 4(sinα+cosα)(cosα+sinα)−23sinα(cosα+sinα)−2(cosα−sinα)(sinα+cosα) =②假设存在常数θ,k,对于所有满足题意的α,β,都有sin2α−sin2β+k=6ksinαcosβ成立,则存在常数θ,k,对于所有满足题意的α,β,利用参考公式,有2cos(α+β)sin(α−β)+k=6k.[(sin(α+β)+sin(α−β)].································14分由题意,α+β=是定值,所以sin(α+β),co(α+β)是定值,[2cos(α+β)−3k]sin(α−β)+k[1−3sin(α+β)]=0对于所有满足题意的α,β成立, 故cosθ=cos[τ−(α+β)]=sin(α+β)=1,.············23思路二:也可以赋值:因为对于所有满足题意的α,β,都有sin2α−sin2β+k=6ksinαcosβ,取α=β,则k=6ksinαcosα,则sin2α=sin(α+β)=,所以cosθ=cos[τ−(α+β)]=sin(α+β)=1,23 取−θ,β=0,则sinα=cosθ=,cosα=,则sin2α+k=6ksinα,即2××+k=6k×再证明等式恒成立.增,··························································所以当x=1时,f(x)取极小值0,无极大值.······················································4分又ex>x0+1>0,则f(ex)>f(x0+1),+∞),使得f(ex)<f(x0+1)成立,故不符合;············又ex>x0+1>1,则f(ex)>f(x0+1),+∞),使得f(ex)<f(x0+1)成立,故不符合;············+∞),使得f(ex)<f(x0+1)成立,故符合.xxxx又g(0)=0,所以g(x)>0,故不存在x0∈(0,+∞),使得f(ex)<f(x0+1)成立.··········5分x又g(0)=0,所以g(x)>0,故不存在x0∈(0,+∞),使得f(ex)<f(x0+1)成立;·······7分又u(x)单调递增,u(x)的图象连续不间断, 所以当x∈(0,x1)时,u(x)<0,即φ+∞),使得f(ex)<f(x0+1)成立.4所以要比较f(4a+a2)与f(2a+a4)的大小,即比较4a+a2与2a+a4的大小,·········11分即比较4a−2a与a4−a2的大小.令F(x)=x2−x,则比较F(2a)与F(a2)的大小.易知F(x)在(1,+∞)上单调递增,即比较2a与a2的大小,即比较aln2与2lna的大小,即比较与的大小.······································12分时,t(x)单调递减,又t(2)=t(4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论