2024届广东省番禺区高三下学期第二学段考试数学试题试卷_第1页
2024届广东省番禺区高三下学期第二学段考试数学试题试卷_第2页
2024届广东省番禺区高三下学期第二学段考试数学试题试卷_第3页
2024届广东省番禺区高三下学期第二学段考试数学试题试卷_第4页
2024届广东省番禺区高三下学期第二学段考试数学试题试卷_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届广东省番禺区高三下学期第二学段考试数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设数列是等差数列,,.则这个数列的前7项和等于()A.12 B.21 C.24 D.362.已知曲线且过定点,若且,则的最小值为().A. B.9 C.5 D.3.将函数的图象沿轴向左平移个单位长度后,得到函数的图象,则“”是“是偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则()A. B.2 C. D.35.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.6.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B.4C. D.57.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为()A. B.6 C. D.8.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.29.已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.已知是第二象限的角,,则()A. B. C. D.11.已知椭圆的左、右焦点分别为,,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率A. B.C. D.12.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.140 D.120二、填空题:本题共4小题,每小题5分,共20分。13.已知平面向量,的夹角为,且,则=____14.已知函数与的图象上存在关于轴对称的点,则的取值范围为_____.15.若函数恒成立,则实数的取值范围是_____.16.已知函数有两个极值点、,则的取值范围为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,,(Ⅰ)求曲线在点(1,0)处的切线方程;(Ⅱ)求函数在区间上的取值范围.18.(12分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)19.(12分)已知,均为正项数列,其前项和分别为,,且,,,当,时,,.(1)求数列,的通项公式;(2)设,求数列的前项和.20.(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.21.(12分)市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).已知小张该笔贷款年限为20年,月利率为0.004.(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.参考数据:.22.(10分)如图,三棱柱中,底面是等边三角形,侧面是矩形,是的中点,是棱上的点,且.(1)证明:平面;(2)若,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

根据等差数列的性质可得,由等差数列求和公式可得结果.【详解】因为数列是等差数列,,所以,即,又,所以,,故故选:B【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.2.A【解析】

根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【点睛】本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.3.A【解析】

求出函数的解析式,由函数为偶函数得出的表达式,然后利用充分条件和必要条件的定义判断即可.【详解】将函数的图象沿轴向左平移个单位长度,得到的图象对应函数的解析式为,若函数为偶函数,则,解得,当时,.因此,“”是“是偶函数”的充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.4.B【解析】

过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,,,,由抛物线定义知:,,,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.5.A【解析】

由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A.6.B【解析】

还原几何体的直观图,可将此三棱锥放入长方体中,利用体积分割求解即可.【详解】如图,三棱锥的直观图为,体积.故选:B.【点睛】本题主要考查了锥体的体积的求解,利用的体积分割的方法,考查了空间想象力及计算能力,属于中档题.7.D【解析】

根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.【详解】如图,该几何体为正方体去掉三棱锥,所以该几何体的体积为:,故选:D【点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.8.D【解析】

根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.9.C【解析】

根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可.【详解】点不在直线、上,若直线、互相平行,则过点可以作无数个平面,使得直线、都与这些平面平行,即必要性成立,若过点可以作无数个平面,使得直线、都与这些平面平行,则直线、互相平行成立,反证法证明如下:若直线、互相不平行,则,异面或相交,则过点只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立则“过点可以作无数个平面,使得直线、都与这些平面平行”是“直线、互相平行”的充要条件,故选:.【点睛】本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键.10.D【解析】

利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【详解】因为,由诱导公式可得,,即,因为,所以,由二倍角的正弦公式可得,,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.11.B【解析】

设,则,,因为,所以.若,则,所以,所以,不符合题意,所以,则,所以,所以,,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率.故选B.12.C【解析】

试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.考点:频率分布直方图及其应用.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】

根据平面向量模的定义先由坐标求得,再根据平面向量数量积定义求得;将化简并代入即可求得.【详解】,则,平面向量,的夹角为,则由平面向量数量积定义可得,根据平面向量模的求法可知,代入可得,解得,故答案为:1.【点睛】本题考查了平面向量模的求法及简单应用,平面向量数量积的定义及运算,属于基础题.14.【解析】

两函数图象上存在关于轴对称的点的等价命题是方程在区间上有解,化简方程在区间上有解,构造函数,求导,求出单调区间,利用函数性质得解.【详解】解:根据题意,若函数与的图象上存在关于轴对称的点,则方程在区间上有解,即方程在区间上有解,设函数,其导数,又由,可得:当时,为减函数,当时,为增函数,故函数有最小值,又由;比较可得:,故函数有最大值,故函数在区间上的值域为;若方程在区间上有解,必有,则有,即的取值范围是;故答案为:;【点睛】本题利用导数研究函数在某区间上最值求参数的问题,函数零点问题的拓展.由于函数的零点就是方程的根,在研究方程的有关问题时,可以将方程问题转化为函数问题解决.此类问题的切入点是借助函数的零点,结合函数的图象,采用数形结合思想加以解决.15.【解析】

若函数恒成立,即,求导得,在三种情况下,分别讨论函数单调性,求出每种情况时的,解关于的不等式,再取并集,即得。【详解】由题意得,只要即可,,当时,令解得,令,解得,单调递减,令,解得,单调递增,故在时,有最小值,,若恒成立,则,解得;当时,恒成立;当时,,单调递增,,不合题意,舍去.综上,实数的取值范围是.故答案为:【点睛】本题考查恒成立条件下,求参数的取值范围,是常考题型。16.【解析】

确定函数的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求的取值范围.【详解】函数的定义域为,,依题意,方程有两个不等的正根、(其中),则,由韦达定理得,,所以,令,则,,当时,,则函数在上单调递减,则,所以,函数在上单调递减,所以,.因此,的取值范围是.故答案为:.【点睛】本题考查了函数极值点问题,考查了函数的单调性、最值,将的取值范围转化为以为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】分析:(1)先断定在曲线上,从而需要求,令,求得结果,注意复合函数求导法则,接着应用点斜式写出直线的方程;(2)先将函数解析式求出,之后借助于导数研究函数的单调性,从而求得函数在相应区间上的最值.详解:(Ⅰ)当,.,当,,所以切线方程为.(Ⅱ),,因为,所以.令,,则在单调递减,因为,所以在上增,在单调递增.,,因为,所以在区间上的值域为.点睛:该题考查的是有关应用导数研究函数的问题,涉及到的知识点有导数的几何意义,曲线在某个点处的切线方程的求法,复合函数求导,函数在给定区间上的最值等,在解题的过程中,需要对公式的正确使用.18.(Ⅰ)万;(Ⅱ)分布列见解析,;(Ⅲ)【解析】

(Ⅰ)根据比例关系直接计算得到答案.(Ⅱ)的可能取值为,计算概率得到分布列,再计算数学期望得到答案.(Ⅲ)英语测试成绩在70分以上的概率为,故,解得答案.【详解】(Ⅰ)样本中女生英语成绩在分以上的有人,故人数为:万人.(Ⅱ)8名男生中,测试成绩在70分以上的有人,的可能取值为:.,,.故分布列为:.(Ⅲ)英语测试成绩在70分以上的概率为,故,故.故的最小值为.【点睛】本题考查了样本估计总体,分布列,数学期望,意在考查学生的计算能力和综合应用能力.19.(1),(2)【解析】

(1),所,两式相减,即可得到数列递推关系求解通项公式,由,整理得,得到,即可求解通项公式;(2)由(1)可知,,即可求得数列的前项和.【详解】(1)因为,所,两式相减,整理得,当时,,解得,所以数列是首项和公比均为的等比数列,即,因为,整理得,又因为,所以,所以,即,因为,所以数列是以首项和公差均为1的等差数列,所以;(2)由(1)可知,,,即.【点睛】此题考查求数列的通项公式,以及数列求和,关键在于对题中所给关系合理变形,发现其中的关系,裂项求和作为一类常用的求和方法,需要在平常的学习中多做积累常见的裂项方式.20.(1);(2)【解析】

(1)当时,由题意得到,令,分类讨论求得函数的最小值,即可求得的最大值.(2)由时,不等式恒成立,转化为在上恒成立,得到,即可求解.【详解】(1)由题意,当时,由,可得,令,则只需,当时,;当时,;当时,;故当时,取得最小值,即的最大值为.(2)依题意,当时,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,则,所以,所示实数的取值范围是.【点睛】本题主要考查了含绝对值的不等式的解法,以及不等式的恒成立问题的求解与应用,着重考查了转化思想,以及推理与计算能力.21.(1)289200元;(2)能够获批;(3)应选择等额本金还款方式【解析】

(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,即可由等差数列的前n项和公式求得其还款总额,减去本金即为还款的利息;(2)根据题意,采取等额本息的还款方式,每月还款额为一等比数列,设小张每月还款额为元,由等比数列求和公式及参考数据,即可求得其还款额,与收入的一半比较即可判断;(3)计算出等额本息还款方式时所付出的总利息,两个利息比较即可判断.【详解】(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,记为,表示数列的前项和,则,,则,故小张该笔贷款的总利息为元.(2)设小张每月还款额为元,采取等额本息的还款方式,每月还款额为一等比数列,则,所以,即,因为,所以小张该笔贷款能够获批.(3)小张采取等额本息贷款方式的总利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论