版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏教版六年级下册数学期末复习专题讲义-3.解决问题的策略【知识点归纳】学会用“转化”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效的解决问题。【典例讲解】例1元旦节,学校举行诗歌朗诵比赛.五(2)班学生排成一个方阵,最外层每边站7名学生,最外层一共有()名学生.A.28 B.32 C.24【分析】最外层人数=每边人数×4﹣4;代入数据即可解答.【解答】解:7×4﹣4=28﹣4=24(人)答:最外层一共有24名学生.故选:C.【点评】此题考查了方阵问题中:最外层点数=每边点数×4﹣4的灵活应用.例2.妈妈今年的年龄是小丽的3倍,妈妈比小丽大22岁,小丽今年11岁.【分析】根据题意,可知妈妈与小丽的年龄差是22岁,又知妈妈的年龄是小丽年龄的3倍,倍数差是3﹣1=2,再根据差倍公式差÷(倍数﹣1)=较小数进行解答即可.【解答】解:根据题意,小丽的年龄:22÷(3﹣1)=22÷2=11(岁)答:小丽今年11岁.故答案为:11.【点评】本题考查了年龄问题与差倍问题的综合应用,关键是找到数量差与它对应的倍数差,从而求出一倍的量.例3.今年小飞5岁,妈妈35岁,妈妈的年龄是小飞的7倍,明年妈妈的年龄小飞的6倍.√(判断对错)【分析】明年小飞(5+1)岁,妈妈(35+1)岁,求明年妈妈的年龄是小飞的几倍,根据求一个数是另一个数的几倍,用除法解答;然后再和6倍比较即可.【解答】解:(35+1)÷(5+1)=36÷6=6即今年妈妈的年龄是小飞的7倍,明年妈妈的年龄是小飞的6倍,所以原题说法正确.故答案为:√.【点评】此题应根据求一个数是另一数的几倍,用除法解答.解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键.例4.小区物业摆了一个正方形花坛(如图).最外一层摆的是兰花,里面摆的都是月季花,兰花和月季花各摆了多少盆?【分析】(1)最外一层摆的是兰花,每边有8盆,然后根据“最外层四周点数=每边点数×4﹣4”,代入数据解答即可;(2)里面摆的都是月季花,每边有6盆,然后根据“总点数=每边点数×每边点数”,代入数据解答即可.【解答】解:(1)8×4﹣4=32﹣4=28(盆)答:兰花摆了28盆.(2)6×6=36(盆)答:月季花各摆了36盆.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.例5.同学们排成方阵参加体操表演,无论从前往后数、从后往前数,还是从左往右数或从右往左数,王华都是第5个,这个方阵共有多少人?【分析】此题可以把这个方形操队看做一个实心方阵问题来解决:中间是王华,根据题干可知:王华所在的行与列的人数都是5+5﹣1=9人;故这个实心方阵的最外层每一边的人数都是9人;利用方阵的总点数=每边点数×每边点数,即可求得这个方阵共有多少人.【解答】解:5+5﹣1=9(人)9×9=81(人)答:这个方阵一共有81人.【点评】此题是考查了实心方阵的总点数=每边点数×每边点数在实际问题中的灵活应用.【同步测试】一.选择题(共10小题)1.同学们在操场上排队,每行人数和行数恰好相等,最外一圈有100人,每行()人.A.10 B.25 C.262.女儿今年(1994年)12岁.妈妈对女儿说:“当你有我这么大岁数时,我已经60岁喽!”问:妈妈12岁时,是哪一年?()A.1969 B.1970 C.1972 D.19743.成都高新区小学组田径队有若干人,经过统计已知田径队平均年龄为10.8岁,后来因为项目调整又增补了两名队员,这两名队员年龄刚好分别为10岁和11岁,那么这时田径队的平均年龄应该()10.8岁.A.小于 B.大于 C.等于 D.以上三种都可能4.一个方阵每边站20人,(四个顶点都有人),那么这个方阵一共有()人.A.400 B.76 C.361 D.805.四年级组成了一个正方形队列,准备参加学校课间操比赛,由于服装不够,只好减少33人,使横竖各减少一排,四年级原来准备()人参加比赛.A.1089 B.1024 C.289 D.1966.刘强今年x岁,李红比刘强大5岁,再过三年刘强比李红小()岁.A.(x﹣3)岁 B.5岁 C.2岁 D.(x+3)岁7.五年级同学体操表演,站成一个方阵,最外围每边站10人,最外围有()人.A.100 B.81 C.40 D.368.观察下面3个图形的规律,按这样的规律排列,第8个图形有()个.A.24 B.28 C.329.在一个正方形花坛四周种树,每边种5棵(四个顶点也要种),一共要种()棵.A.20 B.28 C.16 D.1510.点阵图中第n个点阵有()个点.A.n B.2n C.n×n二.填空题(共8小题)11.三年级学生组成一个正方形方队表演团体操,共8行,每行8人,后来由于服装不够,只好去掉一行一列,共去掉了个学生.12.五年级同学排成方阵做操,最外层每边站了20人,最外层一共有名同学,整个方阵一共有名学生.13.在一个正方形花坛的每条边上摆5盆鲜花,四条边上最多能摆盆,最少能摆盆.14.五年级同学排成方阵做操,最外层每边站了10人,最外层一共有名同学,整个方阵一共有名学生.15.小小今年15岁,小小的妈妈今年43岁,年前小小妈妈的年龄是小小的5倍.16.有28盆花,平均放在会议室前、后、左、右四周,要求四个角都要放一盆,每边放的花的盆数相同,每边各有盆花.17.同学们在操场上围成一个正方形玩游戏,每边28个同学,一共有个同学在玩游戏.18.如图中第5个正方形有个点.如果某个正方形每边上的点子数用a表示,则这个正方形的点子总数可表示为.三.判断题(共5小题)19.甲比乙大3岁,乙就一定比甲小3岁..(判断对错)20.围棋盘的最外层每边能放19个棋子.最外层一共可以摆放76个棋子..(判断对错)21.28名同学围成一个正方形做游戏,每边人数相等,四个顶点都有人,每边各有7名同学..(判断对错)22.小明今年a岁,哥哥比他大b岁,c年后,哥哥比他大b岁..(判断对错)23.三年(1)班有学生39人,减少4人就可以排成方队..(判断对错)四.应用题(共8小题)24.四个小朋友的年龄是四个连续的自然数,他们年龄的最小公倍数是60,他们中年龄最大的是多少?25.小红用1元的硬币摆了一个正方形方阵,最外层每边都有6枚硬币.最外层一共有多少枚硬币?26.张亮的爸爸比妈妈大6岁,张亮爸爸、妈妈今年的岁数和是72.张亮的爸爸、妈妈今年各几岁?27.三年级同学组成一个方阵参加学校的广播操会操活动,无论是从前往后数还是从后往前数小明都第8个,无论是从左往右数还是从右往左数小明都是第12个.三年级一共有多少名同学参加会操活动?28.四年级同学参加学校运动会开幕式表演,共排成4个方队,每个方队排成6行,每行6人.最外圈的同学举彩旗,其余同学举花束.举彩旗的同学一共有多少人?举花束的呢?29.请你帮忙算一算,小明和爸爸今年各多少岁?30.同学们排成第一层每边13人、第二层每边11人、第三层每边9人的中空方阵,求有多少名同学?31.9月30日,学校进行“迎国庆”汇操展演,四年级体操队站成了一个正方形方阵,最外层一共有24人,四年级体操队一共有多少人?
参考答案与试题解析一.选择题(共10小题)1.【分析】每行人数和行数恰好相等,即排成的是一个正方形实心方阵,已知最外一圈有100人,根据“每边的人数=四周的人数÷4+1”解答即可.【解答】解:100÷4+1=25+1=26(人)答:每行26人.故选:C.【点评】此题考查了正方形实心方阵中“每边的人数=四周的人数÷4+1”的运用.2.【分析】根据题意设x年后妈妈60岁,那妈妈现在的年龄是60﹣x岁,则根据妈妈说的话,列方程解答即可.【解答】解:设x年后妈妈60岁,12+x=60﹣x,2x=48,x=24,1994﹣24=1970(年);答:妈妈12岁时是1970年,故选:B.【点评】解答年龄问题的关键是年龄差是不变的.3.【分析】先求得增补的两名队员的平均年龄是多少,再与10.8比较得解.【解答】解:(10+11)÷2=21÷2=10.5(岁)10.5<10.8答:这时田径队的平均年龄应该小于10.8岁.故选:A.【点评】此题考查了求平均数的方法在年龄问题中的运用.4.【分析】一个方阵每边站20人,那么每行,每列都是20人,可以看成每行有20人,一共是20行,求方阵一共有多少人数,就用每行的人数乘上行数即可.【解答】解:20×20=400(人)答:这个方阵一共有400人.故选:A.【点评】本题考查了方阵的总人数的求法:总人数=每行的人数×行数.5.【分析】根据题干,一共去掉了33人,那么原来的方阵的每边人数是(33+1)÷2=17人,据此利用每边人数×每边人数即可求出总人数.【解答】解:原来的方阵的每边人数是(33+1)÷2=17(人),17×17=289(人)答:四年级原来准备289人参加表演.故选:C.【点评】方阵问题相关的知识点是:四周的人数=(每边的人数﹣1)×4,每边的人数=四周的人数÷4+1,中实方阵的总人数=每边的人数×每边的人数,空心方阵的总人数=(最外层每边的人数﹣空心方阵的层数)×空心方阵的层数×4,外层边长数2﹣中空边长数2=实面积数.6.【分析】李红比刘强大5岁,即刘强比李红小5岁,由于年龄差不随时间的变化而改变,所以再过3年,他们相差的岁数不变,由此求解.【解答】解:李红比刘强大5岁,即刘强比李红小5岁,再过三年刘强还是比李红小5岁.故选:B.【点评】理解年龄差不随时间的变化而改变是解答此题的关键.7.【分析】方阵每边人数与四周人数的关系:四周人数=(每边人数﹣1)×4;据此解答即可.【解答】解:(10﹣1)×4=9×4=36(人)答:最外围有36人.故选:D.【点评】此题考查了方阵问题中:四周人数=(每边人数﹣1)×4;或最外层四周点数=每边点数×4﹣4的灵活应用.8.【分析】每边圆圈的个数=图形顺序+1;再利用方阵最外层四周点数=每边点数×4﹣4计算出最外层四周圆圈数即可.【解答】解:(8+1)×4﹣4=36﹣4=32(人)答:第8个图形有32个.故选:C.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.9.【分析】根据公式“最外层四周点数=每边点数×4﹣4”代入数据解答即可.【解答】解:5×4﹣4=20﹣4=16(棵)答:四周共种了16棵.故选:C.【点评】此题考查了方阵问题中:最外层四周点数=每边点数×4﹣4的灵活应用.10.【分析】图形看做一个方阵,第n个点阵,每边就有n个点,然后根据“总点数=每边点数×每边点数”解答即可.【解答】解:点阵图中第n个点阵有n×n=n2个点.故选:C.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;的灵活应用.二.填空题(共8小题)11.【分析】根据题干,每行每列都是8人,如图所示,那么去掉一行一列共去掉了8×2﹣1=15人.【解答】解:8×2﹣1=15(人),答:一共去掉了15人.故答案为:15.【点评】实心方阵中,1行1列的点数等于每边点数×2﹣1.12.【分析】最外层人数=每边人数×4﹣4;实心方阵中总人数=每边人数×每边人数;代入数据即可解答.【解答】解:20×4﹣4=76(名),20×20=400(名),答:最外层一共有76名同学,整个方阵一共有400名学生.故答案为:76,400.【点评】此题考查了方阵问题:最外层点数=每边点数×4﹣4;实心方阵中总点数=每边点数×每边点数的灵活应用.13.【分析】四个角都不放时,摆的花盆数最多,利用总盆数=每边花盆数×4计算即可;四个角都放时,摆的花盆数最少,根据总盆数=每边花盆数×4﹣4即可解答.【解答】解:5×4=20(盆)5×4﹣4=20﹣4=16(盆)答:四条边上最多能摆20盆,最少能摆16盆.故答案为:20,16.【点评】此题考查了空心方阵中四周点数=每边点数×4﹣4的计算应用,要注意顶点处不放时,摆的花盆数最多.14.【分析】最外层人数=每边人数×4﹣4;实心方阵中总人数=每边人数×每边人数;代入数据即可解答.【解答】解:10×4﹣4=36(名),10×10=100(名),答:最外层一共有36名同学,整个方阵一共有100名学.故答案为:36,100.【点评】此题考查了方阵问题:最外层点数=每边点数×4﹣4;实心方阵中总点数=每边点数×每边点数的灵活应用.15.【分析】设x年前妈妈的年龄是小小的年龄的5倍,那么小小的年龄就是(15﹣x)岁,妈妈的年龄是(43﹣x)岁,用小小的年龄乘上5,就是妈妈的年龄,由此求解.【解答】解:设x年前妈妈的年龄是小小的年龄的5倍,由题意得:(15﹣x)×5=43﹣x75﹣5x=43﹣x4x=32x=8答:8年前小小妈妈的年龄是小小的5倍.故答案为:8.【点评】解决本题设出未知数,表示出小小和妈妈的年龄,再根据倍数关系列出方程求解.16.【分析】根据方阵最外层四周点数=每边点数×4﹣4可得:每边点数=四周点数÷4+1,然后代入数据解答即可.【解答】解:28÷4+1=7+1=8(盆)答:每边各有8盆花.故答案为:8.【点评】此题考查了方阵问题中:最外层四周点数=每边点数×4﹣4的灵活应用.17.【分析】由于每个顶点都是两条边的交点,即4个顶点上的人都被重复计算一次,每边28个同学,28×4=112,将四个顶点上的重复计算的人减去,则共有112﹣4=108个同学.【解答】解:28×4﹣4=112﹣4=108(个)答:一共108个同学在玩游戏.故答案为:108.【点评】本题要注意4个顶点上的人都被重复计算一次,可实际画下图更容易明白.18.【分析】注意观察前三个图形中圆点的个数可以发现分别为:4,8,12,后一个图形中的圆点个数比前一个图形中圆点多4,所以可得圆点的总数与每边上的圆点数之间的关系用字母表示为:S=4a﹣4.也可直接根据“空心方阵的四周点数=每边点数×4﹣4”解答.【解答】解:(1)4×6﹣4=24﹣4=20(个)答:第5个正方形有20个点.(2)4a﹣4(个)答:这个正方形的点子总数可表示为4a﹣4个.故答案为:20;4a﹣4.【点评】此题属于空心方阵问题,空心方阵的四周点数=每边点数×4﹣4.三.判断题(共5小题)19.【分析】可以利用赋值法解答:如甲6岁,乙3岁,甲比乙大6﹣3=3岁,乙比甲小6﹣3=3岁,据此即可判断.【解答】解:根据题干分析可得,甲比乙大3岁,乙就一定比甲小3岁,此题说法正确.故答案为:√.【点评】此题考查了谁比谁大或谁比谁小多少的意义及叙述方法.20.【分析】利用空心方阵最外层总点数=每边点数×4﹣4,即可计算得出这个围棋盘最外层一共可以摆放的棋子数,据此即可判断.【解答】解:19×4﹣4,=76﹣4,=72(个);答:最外层一共可以摆放72个棋子.故答案为:×.【点评】此题主要考查空心方阵最外层总点数的计算方法的灵活应用,熟记公式即可解答.21.【分析】此题属于空心方阵问题:每边人数=(四周人数+4)÷4,由此代入数据即可解答.【解答】解:(28+4)÷4=32÷4=8(人)答:每边有学生8人.故答案为:×.【点评】此题考查了空心方阵问题中:每边点数=(四周点数+4)÷4的灵活应用.22.【分析】根据“小明今年a岁,哥哥比他大b岁,”可以求出今年哥哥的年龄;再分别求出c年后小明和哥哥的年龄,那哥哥比小明大的年龄即可求出.【解答】解:哥哥今年的年龄是:a+b岁,c年后小明的年龄是:a+c岁,c年后哥哥的年龄是:a+b+c岁,c年后哥哥比小明大的岁数是:a+b+c﹣(a+c)=a+b+c﹣a﹣c=b(岁)答:c年后哥哥比他大b岁,故答案为:√.【点评】此题主要是通过计算推导出两人的年龄差是不会随着年龄的变化而改变的,在推导计算时,把所给出的字母当作已知数,找出对应的量,根据基本的数量关系解决问题.23.【分析】39人减少4人还剩35人,35应是每边人数的完全平方数,但是35不是自然数的完全平方数,所以39人减少4人后不能排成方队.【解答】解:根据分析可知,39﹣4=35(人);因为35不是自然数的完全平方数,所以39人减少4人后不能排成方队;但是如果39人减少3人后能排成6×6的方队.故答案为:错误.【点评】本题考查了实心方阵的有关知识,计算公式是:总点数=每边点数×每边点数;总点数÷4+1=每边点数.四.应用题(共8小题)24.【分析】先把60分解质因数,根据相邻自然数相差1,从60的质因数中找出这四个数,然后找出最大的数即可.【解答】解:60=2×2×3×5,所以这四个数是:2、3、2×2=4、5,所以这四人中最大的是5岁;答:他们中年龄最大的是5岁.【点评】解答本题主要根据相邻自然数相差1,从60的质因数中找出这四个数.25.【分析】最外层每边都有6枚硬币,要求最外层一共有多少枚硬币,根据最外层点数=每边点数×4﹣4;代入数据即可解答.【解答】解:6×4﹣4=24﹣4=20(枚)答:最外层一共有20枚硬币.【点评】此题考查了方阵问题中:最外层点数=每边点数×4﹣4的灵活应用.26.【分析】设张亮的爸爸x岁,则妈妈的年龄是(x﹣6)岁,根据等量关系“爸爸、妈妈今年的岁数和是72”,列方程解答即可.【解答】解:设张亮的爸爸x岁,则妈妈的年龄是(x﹣6)岁,x+x﹣6=722x=78x=3939﹣6=33(岁)答:张亮的爸爸、妈妈今年分别是39岁、33岁.【点评】本题主要是考查年龄问题,首先要把题意弄清,再根据等量关系列出方程解答即可.27.【分析】此题可以把这个方形操队看做一个实心方阵问题来解决:无论是从前往后数还是从后往前数小明都第8个,那么每列8+8﹣1=15(人);无论是从左往右数还是从右往左数小明都是第12个,那么么每行有12+12﹣1=23(人),然后利用方阵的总点数=每边点数×每边点数,即可求得这个方阵共有多少人.【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物(内蒙古)-【八省联考】河南、山西、陕西、内蒙古、四川、云南、宁夏、青海八省2025年高考综合改革适应性演练联考试题和答案
- 《法国园林》课件
- 小学生一年级30以内加减法100题
- 高考新课标语文模拟试卷系列之63
- 《梅花岭记》课件
- 行政后勤治安防范措施
- 装饰行业采购经验分享
- 饮品店服务员工作心得
- 《温州地区特产》课件
- 装修行业监督装修工程卫生施工
- GB/T 1335.2-2008服装号型女子
- GB 31247-2014电缆及光缆燃烧性能分级
- DCC20网络型监视与报警
- 《简单教数学》读书心得课件
- 井底车场及硐室课件
- 小学生法制安全教育演讲稿6篇
- DL 5190.8-2019 电力建设施工技术规范 第8部分:加工配制
- 开放是当代中国的鲜明标识 教学设计-高中政治统编版选择性必修一
- 毕业设计(论文)-基于AT89C51单片机的温度控制系统设计
- 二手新能源汽车充电安全承诺书
- 幼儿园绘本故事:《想暖和的雪人》 课件
评论
0/150
提交评论