版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解密17概率统计考点热度★★★★☆内容索引核心考点1随机事件的概率核心考点2古典概型核心考点3随机抽样核心考点4用样本估计总体核心考点5变量间的相关关系核心考点6统计案例课外补充几何概型(有兴趣的研究)微专题概率统计综合应用考点由高考知核心知识点预测概率统计热点预测与趋势分析概率统计基本为必考题。今后高考的命题趋势:选择、填空、解答皆有可能出。变化很多。一般难度不大核心考点一随机事件的概率随机事件的概率及概率的意义1、基本概念:(1)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试利用频率估计概率
(1)、利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
(2)、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
(3)、随机数
在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数。2.概率的基本性质1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);3.互斥事件与对立事件事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。
如果A1,A2,…,An中任何两个都不可能同时发生,那么就说事件A1,A2,…An彼此互斥。
对立事件:
两个事件中必有一个发生的互斥事件叫做对立事件,事件A的对立事件记做。
注:两个对立事件必是互斥事件,但两个互斥事件不一定是对立事件。
事件A+B的意义及其计算公式:
(1)事件A+B:如果事件A,B中有一个发生发生。
(2)如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A1,A2,…An彼此互斥时,那么P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。
(3)对立事件:P(A+)=P(A)+P()=1。
如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A1,A2,…An彼此互斥时,那么P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。
如果事件A,B对立事件,则P(A+B)=P(A)+P(B)=1。
互斥事件与对立事件的区别和联系:
互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生。因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件。考法随机事件的概率1.(2015·湖北·高考真题(文))我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石 B.169石 C.338石 D.1365石【答案】B【详解】设夹谷石,则,所以,所以这批米内夹谷约为石,故选B.考点:用样本的数据特征估计总体.2.(2018·全国·高考真题(文))若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.7【答案】B【详解】分析:由公式计算可得详解:设事件A为只用现金支付,事件B为只用非现金支付,则因为所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.3.(2021·江苏·高考真题)逻辑表达式等于()A. B. C. D.【答案】D【分析】从集合角度去理解逻辑表达式【详解】如图,类似于,则类似于故选:D.1.(2016·天津·高考真题(文))甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为A. B. C. D.【答案】A【详解】试题分析:甲不输概率为选A.【考点】概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法公式.对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.2.(2021·广西·模拟预测(理))甲、乙去同一家药店购买一种医用外科口罩,已知这家药店出售A,B,C三种医用外科口罩,甲、乙购买A,B,C三种医用口罩的概率分别如下:购买A种医用口罩购买B种医用口罩购买C种医用口罩甲0.20.4乙0.30.3则甲、乙购买的是同一种医用外科口罩的概率为()A.0.44 B.0.40 C.0.36 D.0.32【答案】D【分析】先求出甲购买A种医用口罩和乙购买B种医用口罩的概率,然后利用独立事件的乘法公式和互斥事件的加法公式求解即可.【详解】由表可知,甲购买A种医用口罩的概率为0.4,乙购买B种医用口罩的概率为0.4,所以甲,乙购买的是同一种医用外科口罩的概率为.故选:D.3.(2021·全国全国·模拟预测)如图,开关,被称为双联开关,可以与a,b点相连,概率分别为,可以与c,d点相连,概率分别为,普通开关要么与e点相连(闭合),要么悬空(断开),概率也分别为.若各开关之间的连接情况相互独立,则电灯不亮的概率是()A. B. C. D.【答案】C【分析】利用对立事件,结合相互独立事件概率计算公式,计算出所求概率.【详解】先考虑对立事件“电灯亮”:首先需要“与e点相连”,同时满足“与点相连且与c点相连”或“与b点相连且与d点相连”,因此电灯亮的概率,故电灯不亮的概率为.故选:C4.(2021·四川内江·一模(文))“事件A与事件B是对立事件”是“事件A与事件B是互斥事件”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【分析】由充分条件和必要条件的定义结合对立事件、互斥事件的定义分析判断【详解】因为当事件A与事件B是对立事件时,可得事件A与事件B一定是互斥事件,而当事件A与事件B是互斥事件时,事件A与事件B不一定是对立事件,所以“事件A与事件B是对立事件”是“事件A与事件B是互斥事件”的充分而不必要条件,故选:A核心考点二古典概型类型一:古典概型;古典概型的基本特点:基本事件数有限多个;每个基本事件之间互斥且等可能;概率计算公式:A事件发生的概率;考法古典概型1.(2020·山东·高考真题)现有5位老师,若每人随机进入两间教室中的任意一间听课,则恰好全都进入同一间教室的概率是()A. B. C. D.【答案】B【分析】利用古典概型概率公式,结合分步计数原理,计算结果.【详解】5位老师,每人随机进入两间教室中的任意一间听课,共有种方法,其中恰好全都进入同一间教室,共有2种方法,所以.故选:B2.(2011·浙江·高考真题(文))从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A. B. C. D.【答案】D【详解】试题分析:从装有个红球,个白球的袋中任取个球,共有基本事件种,则全取红球的基本事件只有一种,所以所取个球中至少有个白球的概率为,故选D.考点:古典概型及其概率的计算.1.(2022·湖南邵阳·一模)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:任意一个大于2的偶数都可以写成两个素数(质数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中都取得了相当好的成绩.若将14拆成两个正整数的和,则拆成的和式中,加数全部为素数的概率为()A. B. C. D.【答案】A【分析】写出所有的等式,计算基本事件的总数,再计算事件拆成的和式中,加数全部为素数所包含的基本事件,即可得到答案;【详解】,共有13个和式,其中加数全部为素数为,共3个基本事件,,故选:A2.(2022·广西柳州·二模(文))为了丰富学生的课外生活,学校组建了数学建模、航空、绘画、摄影、舞蹈个兴趣小组,小明随机选报其中的个,则小明选报了数学建模兴趣小组的概率为()A. B. C. D.【答案】B【分析】利用古典概型计算公式直接计算即可.【详解】个兴趣小组随机选报其中个的方案共种,其中包括数学建模兴趣小组的方案有种,所以概率为,故选:B.核心考点三随机抽样统计学中的简单的抽样方法;方法一:简单随机抽样;基本原理:根据研究目的选定总体,首先对总体中所有的观察单位编号,遵循随机原则,采用不放回抽取方法,从总体中随机抽取一定数量观察单位组成样本。具体做法:①随机数字法;②抽签法;优缺点分析:优点:基本原理比较简单;当总体容量不大时比较方便;抽样误差的计算较方便;缺点:对所有观察单位编号,当数量大时,有难度;方法二:系统抽样;基本原理:先将总体的观察单位按某顺序号等分成n个部分再从第一部分随机抽第k号观察单位,依次用相等间隔,机械地从每一部分各抽取一个观察单位组成样本;优缺点分析:优点:抽样方法简便,特别是容量比较大的时候;
易得到一个按比例分配的样本,抽样误差较小;缺点:仍需对每个观察单位编号;
当观察单位按顺序有周期趋势或单调性趋势时,产生明显偏性;方法三:分层抽样;基本原理:先将总体按某种特征分成若干层,再从每一层内随机抽取一定数量的观察单位,合起来组成样本。具体做法:第一步:计算每一层个体数与总体容量的比值;第二步:用样本容量分别乘以每一层的比值,得出每层应抽取的个体数;第三步:用简单随机抽样的方法产生样本;优缺点分析:优点:在一定程度上控制了抽样误差,尤其是最优分配法;缺点:总体必须要能分成差别比较大的几层时才能用,局限性比较大;总结:以上三种抽样方法的共同特征是每个个体被抽中的可能性相同;考法随机抽样1.(2019·全国·高考真题(文))某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生 B.200号学生 C.616号学生 D.815号学生【答案】C【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,所以,若,则,不合题意;若,则,不合题意;若,则,符合题意;若,则,不合题意.故选C.【点睛】本题主要考查系统抽样.2.(2021·湖南·高考真题)已知某地区中小学生人数和近视情况分别如图(1)和图(2)所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则在抽取的高中生中,近视人数约为()A.1000 B.40 C.27 D.20【答案】D【分析】根据高中生的总人数乘以抽样比可得所抽的高中生人数,再由近视率为即可求解.【详解】由图(1)知高中生的总人数为人,所以应抽取的高中生为人,抽取的高中生中,近视人数约为人,故选:D1.(2012·四川·高考真题(文))交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数为A.101 B.808 C.1212 D.2012【答案】B【详解】试题分析:由分层抽样的定义可得,解得,答案选B.考点:分层抽样2.(2021·上海松江·一模)某校有高一学生390人,高二学生360人,高三学生345人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取部分学生作为样本.若从高二学生中抽取的人数为24人,则高一学生和高三学生应抽取的人数分别为()A.高一学生26人、高三学生23人B.高一学生28人、高三学生21人C.高一学生多于24人、高三学生少于24人即可D.高一、高三学生人数都不限【答案】A【分析】根据分层抽样在各层的抽样比相等建立方程求解即可.【详解】设高一学生抽取人,高三学生抽取人,则有:,故选:A3.(2020·西藏·林芝一中模拟预测(理))电影《你好,李焕英》于年月日在中国内地上映,创造了连续多日的单日票房冠军.某新闻机构想了解全国人民对《你好,李焕英》的评价,决定从某市个区按人口数用分层抽样的方法抽取一个样本.若个区人口数之比为,且人口最少的一个区抽出人,则这个样本的容量等于()A. B. C. D.【答案】D【分析】这个样本的容量为,则,由此能求出这个样本的容量.【详解】解:从某市3个区按人口数用分层抽样的方法抽取一个样本.3个区人口数之比为,且人口最少的一个区抽出100人,设这个样本的容量为,则,解得.这个样本的容量等于600.故选:D.核心考点四用样本估计总体1、平均数:一般地,如果有n个数那么,叫做这n个数的平均数,读作“x拔”。2、加权平均数:如果n个数中,出现次,出现次,…,出现次(这里)。那么,根据平均数的定义,这n个数的平均数可以表示为,这样求得的平均数叫做加权平均数,其中叫做权。3、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
4、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。
5、极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
6、方差:在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。通常用“”表示,即7、标准差:方差的算数平方根叫做这组数据的标准差,用“s”表示,即方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。常用的几个统计学图表;图表一:频率分布直方图与频率分布折线图;说明几个基本概念:频数:符合某一条件的个体个数;频率:频率=;(在必要情况下,可以近视的看作概率;所有组的频率之和是1;)认识频率分布直方图:横标是分组的情况;纵标不是频率,而是频率/组距;小方框的面积才是频率;所有的面积和为1;画频率分布直方图:第一步:求极差;第二步:分组,确定组距;第三步:列频率分布表;第四步:作图;画频率分布折线图:将频率分布直方图中每个方框的顶边的中点用直线连起来形成的折线图;图表二:茎叶图;定义:若数据为整数,一般用中间的数表示个位数以上的部分,两边的数表示个位数字;若数据是小数,一般用中间的数表示整数部分,两边的数表示小数部分形成的图表;考法用样本估计总体1.(2021年全国高考甲卷数学(理)试题)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确;该地农户家庭年收入的平均值的估计值为(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于.2.(2017·全国·高考真题(理))某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【分析】观察折线图,结合选项逐一判断即可【详解】对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;对于选项C,观察折线图,各年的月接待游客量高峰期大致在7,8月份,故C正确;对于D选项,观察折线图,各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳,故D正确.故选:A3.(2020·全国·高考真题(理))在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是()A. B.C. D.【答案】B【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A选项,该组数据的平均数为,方差为;对于B选项,该组数据的平均数为,方差为;对于C选项,该组数据的平均数为,方差为;对于D选项,该组数据的平均数为,方差为.因此,B选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.(2021·全国·高考真题(理))某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.(1)求,,,;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).【答案】(1);(2)新设备生产产品的该项指标的均值较旧设备有显著提高.【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的结论进行判断.【详解】(1),,,.(2)依题意,,,,所以新设备生产产品的该项指标的均值较旧设备有显著提高.1.(2019·全国·高考真题(理))演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差【答案】A【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.2.(2022·四川巴中·一模(文))如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为和,样本标准差分别为和,样本极差分别为和,则()A.,, B.,,C.,, D.,,【答案】B【分析】观察图形可知,样本A的数据均在之间,样本B的数据均在之间,利用平均数,标准差,极差的定义可得解.【详解】观察图形可知,样本A的数据均在之间,样本B的数据均在之间,由平均数的计算可知,样本极差样本B的数据波动较小,故,故选:B3.(2022·云南昆明·一模(文))在如图所示的茎叶图中,记甲、乙两组数据的平均数分别为、,标准差分别为、.根据茎叶图估计甲、乙两组数据的平均数及标准差,下列描述正确的是()A., B.,C., D.,【答案】A【分析】由茎叶图计算出甲、乙的平均数,再由茎叶图数据的分布情况判断甲、乙谁的数据更集中即可判断.【详解】由茎叶图知,甲的数据有,乙的数据有,则,,所以,再由茎叶图数据的分布情况可知,甲的数据主要集中在附近,乙的数据比较分散,所以甲数据更稳定,所以.故选:A4.(2022·河南洛阳·一模(文))为了响应国家节电号召,某小区欲对全体住户进行节电设施改造.在大规模改造前,为预估改造效果,现在该小区中抽取了100户进行改造,并统计出了这100户在改造前后的月均用电量(单位:度),得到的频数分布表如下:月均用电量频数12183022126改造前这100户月均用电量频数分布表改造后这100户月均用电量频数分布表月均用电量频数122440168
(1)补全改造后这100户的月均用电量的频率分布直方图;(2)利用以上数据估计该小区在改造完成后,月均用电量低于150度的概率;(3)该小区现有2000户,若全部改造完成后,估计一个月能节约多少度电?(同一组的数据以这组数据所在区间的中点的值作代表)【答案】(1)详见解析;(2)0.56;(3)38000【分析】(1)根据和的频数得到频率,补全频率分布直方图;(2)根据频率分布直方图求解;(3)分别求得改造前和改造后月平均用电量,再作差求解.(1)解:因为的频数为24,所以频率为0.24,的频数为16,所以频率为0.16,则改造后这100户的月均用电量的频率分布直方图如下:(2)由频率分布直方图知:月均用电量低于150度的概率为:.(3)改造前月平均用电量:;改造后月平均用电量:,则,所以全部改造完成后,估计一个月能节约38000度电.核心考点五变量间的相关关系变量间的相互关系与统计案例;1、相关关系的分类:从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关。2、线性相关:从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线。3.最小二乘法求回归方程:(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(xn,yn),其回归方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),其中,b是回归方程的斜率,a是在y轴上的截距考法变量间的相关关系1.(2020·全国·高考真题(理))某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A. B.C. D.【答案】D【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率和温度的回归方程类型的是.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.2.(2015·湖北·高考真题(文))已知变量和满足关系,变量与正相关.下列结论中正确的是A.与负相关,与负相关B.与正相关,与正相关C.与正相关,与负相关D.与负相关,与正相关【答案】A【详解】因为变量和满足关系,一次项系数为,所以与负相关;变量与正相关,设,所以,得到,一次项系数小于零,所以与负相关,故选A.1.(2021·河南·模拟预测(文))已知两个变量与的五组数据如下表所示,且关于的线性回归方程为,则()6.37.27.88.29.542465057A.52 B.53 C.54 D.55【答案】D【分析】由表格数据求,由样本中心在回归方程上求,进而根据均值公式求参数m即可.【详解】由,则,∴.故选:D.2.(2021·四川雅安·模拟预测(理))某学习研究小组为了考察学校军训期间的矿泉水需求量林泉水件数(单位:件)与同时军训的班级数量(单位:个)之间的相关关系,得到了如下散点图.若根据该散点图求出的回归直线方程为,则的值是()A. B.8 C.5 D.3【答案】D【分析】求出样本中心点,根据回归直线必过样本中心点,代入即可得解.【详解】解:回归直线必过样本中心点,即,代入计算得.故选:D.核心考点六统计案例回归方程:两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(xn,yn),其回归方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),其中,b是回归方程的斜率,a是在y轴上的截距.样本相关系数:r=,用它来衡量两个变量间的线性相关关系.(1)当r>0时,表明两个变量正相关;(2)当r<0时,表明两个变量负相关;(3)r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|>0.75时,认为两个变量有很强的线性相关关系.6.独立性检验:(1)用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例如:是否吸烟,宗教信仰,国籍等.(2)列出的两个分类变量的频数表,称为列联表.(3)一般地,假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d(其中n=a+b+c+d为样本容量),可利用独立性检验判断表来判断“x与y的关系”.这种利用随机变量K2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.附表:P(K2≥k)0.0500.0100.001k3.8416.63510.828注意:(1)越大相关性越强,反之越弱;(2)附表中P(K2≥k)是两个统计学变量无关的概率;考法统计案例5.(2021·全国·高考真题(文))甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:0.0500.0100.001k3.8416.63510.828【答案】(1)75%;60%;(2)能.【分析】根据给出公式计算即可【详解】(1)甲机床生产的产品中的一级品的频率为,乙机床生产的产品中的一级品的频率为.(2)故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.6.(2020·全国·高考真题(理))某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r=,≈1.414.【答案】(1);(2);(3)详见解析【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为,地块数为200,该地区这种野生动物的估计值为(2)样本(i=1,2,…,20)的相关系数为(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.1.(2022·广东茂名·一模)为了增强学生体质,茂名某中学的体育部计划开展乒乓球比赛,为了解学生对乒乓球运动的兴趣,从该校一年级学生中随机抽取了200人进行调查,男女人数相同,其中女生对乒乓球运动有兴趣的占80%,而男生有15人表示对乒乓球运动没有兴趣.(1)完成2×2列联表,并回答能否有90%的把握认为“对乒乓球运动是否有兴趣与性别有关”?有兴趣没兴趣合计男女合计(2)为了提高同学们对比赛的参与度,比赛分两个阶段进行.第一阶段的比赛赛制采取单循环方式,每场比赛采取三局二胜制,然后由积分的多少选出进入第二阶段比赛的同学,每场积分规则如下:比赛中以取胜的同学积3分,负的同学积0分;以取胜的同学积2分,负的同学积1分.其中,小强同学和小明同学的比赛倍受关注,设每局小强同学取胜的概率为,记小强同学所得积分为,求的分布列和期望.附表:P(K2≥k0)0.500.400.250.1500.1000.050k00.4550.7801.3232.0722.7063.841【答案】(1)表格见解析,没有;(2)分布列见解析,.【分析】(1)列出2×2列联表,计算卡方的值,从而可得出答案;(2)首先求出的所有可能取值,然后计算取各个值时的概率,从而可列出分布列及求出数学期望.(1)由题意得到如下的2×2列联表,有兴趣没兴趣合计男8515100女8020100合计16535200,由表格得到,所以没有90%的把握认为“对乒乓球运动是否有兴趣与性别有关”.(2)由题意,知,;;;,所以的分布为0123所以期望.2.(2022·全国·模拟预测)千百年来,人们一直在通过不同的方式传递信息.在古代,烽火狼烟、飞鸽传书、快马驿站等通信方式被人们广泛应用;第二次工业革命后,科技的进步带动了电讯事业的发展,电报的发明让通信领域发生了翻天覆地的变化;之后,计算机和互联网的出现则使得“千里眼”“顺风耳”变为现实.现在,的到来给人们的生活带来颠覆性的变革,某科技创新公司基于领先技术的支持,经济收入在短期内逐月攀升,该创新公司在第月份至6月份的经济收入(单位:百万元)关于月份的数据如表:时间(月份)123456收入(百万元)根据以上数据绘制散点图,如图.(1)根据散点图判断,与均为常数)哪一个适宜作为经济收入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度研发合作合同:某科技公司与某高校共同研发新技术
- 2024年度股权投资合同标的与投资服务详细规定
- 2024年度商务用车租赁与管理合同
- 2024年度船舶建造与修理合同
- 2024年度版权许可使用合同涉及美术作品
- 2024年度租赁合同:设备租赁及维护合同
- 2024年度二手车交易市场车位租赁协议
- 2024年度租赁脚手架合同
- 《富尊宣传》课件
- 2024年度传单发行权益保障合同2篇
- 【初中道法】爱护身体+课件-2024-2025学年统编版(2024)道德与法治七年级上
- 2024年医疗器械经营质量管理规范培训课件
- 景区旅游安全风险评估报告
- GB/T 36187-2024冷冻鱼糜
- 22G101三维彩色立体图集
- 建筑施工安全生产治本攻坚三年行动方案(2024-2026年)
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 国家开放大学《心理健康教育》形考任务1-9参考答案
- 中国戏曲剧种鉴赏智慧树知到期末考试答案章节答案2024年上海戏剧学院等跨校共建
- MOOC 法理学-西南政法大学 中国大学慕课答案
- (高清版)DZT 0399-2022 矿山资源储量管理规范
评论
0/150
提交评论