2024届第一学期上海市宝安区高三(下)调研数学试题试卷_第1页
2024届第一学期上海市宝安区高三(下)调研数学试题试卷_第2页
2024届第一学期上海市宝安区高三(下)调研数学试题试卷_第3页
2024届第一学期上海市宝安区高三(下)调研数学试题试卷_第4页
2024届第一学期上海市宝安区高三(下)调研数学试题试卷_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届第一学期上海市宝安区高三(下)调研数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立 B.当时,该命题成立C.当时,该命题不成立 D.当时,该命题成立2.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则()A.170 B.10 C.172 D.123.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为()A.100 B.1000 C.90 D.905.设为自然对数的底数,函数,若,则()A. B. C. D.6.设,则()A. B. C. D.7.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为()A.3 B.2 C.1 D.08.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是()A. B.3 C. D.9.已知集合,,,则()A. B. C. D.10.下列函数中,值域为的偶函数是()A. B. C. D.11.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.012.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知的展开式中含有的项的系数是,则展开式中各项系数和为______.14.某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求详见选票.这3名候选人的得票数(不考虑是否有效)分别为总票数的88%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为百分之________.“我身边的榜样”评选选票候选人符号注:1.同意画“○”,不同意画“×”.2.每张选票“○”的个数不超过2时才为有效票.甲乙丙15.已知函数为奇函数,则______.16.已知为椭圆的左、右焦点,点在椭圆上移动时,的内心的轨迹方程为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长.18.(12分)如图,已知在三棱锥中,平面,分别为的中点,且.(1)求证:;(2)设平面与交于点,求证:为的中点.19.(12分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,,,且这六名同学答题正确与否相互之间没有影响.(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望.20.(12分)在中,角所对的边分别是,且.(1)求角的大小;(2)若,求边长.21.(12分)在中,角所对的边分别是,且.(1)求;(2)若,求.22.(10分)已知数列满足,.(1)求数列的通项公式;(2)若,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.2.D【解析】

中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.【详解】由茎叶图知,甲的中位数为,故;乙的平均数为,解得,所以.故选:D.【点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.3.D【解析】

根据复数运算,求得,再求其对应点即可判断.【详解】,故其对应点的坐标为.其位于第四象限.故选:D.【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.4.A【解析】

利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为.故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.5.D【解析】

利用与的关系,求得的值.【详解】依题意,所以故选:D【点睛】本小题主要考查函数值的计算,属于基础题.6.D【解析】

结合指数函数及对数函数的单调性,可判断出,,,即可选出答案.【详解】由,即,又,即,,即,所以.故选:D.【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.7.C【解析】

根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③.【详解】①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;③对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故③为假命题.故选:.【点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题.8.D【解析】

设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【详解】由题意,设点.,即,整理得,则,解得或..故选:.【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.9.D【解析】

根据集合的基本运算即可求解.【详解】解:,,,则故选:D.【点睛】本题主要考查集合的基本运算,属于基础题.10.C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.考点:1、函数的奇偶性;2、函数的值域.11.C【解析】

集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.12.C【解析】∵y=f(x+1)是偶函数,∴f(-x+1)=f(x+1),即函数f(x)关于x=1对称.

∵当x≥1时,为减函数,∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,

故选C二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】

由二项式定理及展开式通项公式得:,解得,令得:展开式中各项系数和,得解.【详解】解:由的展开式的通项,令,得含有的项的系数是,解得,令得:展开式中各项系数和为,故答案为:1.【点睛】本题考查了二项式定理及展开式通项公式,属于中档题.14.91【解析】

设共有选票张,且票对应张数为,由此可构造不等式组化简得到,由投票有效率越高越小,可知,由此计算可得投票有效率.【详解】不妨设共有选票张,投票的有,票的有,票的有,则由题意可得:,化简得:,即,投票有效率越高,越小,则,,故本次投票的有效率(有效票数与总票数的比值)最高可能为.故答案为:.【点睛】本题考查线性规划的实际应用问题,关键是能够根据已知条件构造出变量所满足的关系式.15.【解析】

利用奇函数的定义得出,结合对数的运算性质可求得实数的值.【详解】由于函数为奇函数,则,即,,整理得,解得.当时,真数,不合乎题意;当时,,解不等式,解得或,此时函数的定义域为,定义域关于原点对称,合乎题意.综上所述,.故答案为:.【点睛】本题考查利用函数的奇偶性求参数,考查了函数奇偶性的定义和对数运算性质的应用,考查计算能力,属于中等题.16.【解析】

考查更为一般的问题:设P为椭圆C:上的动点,为椭圆的两个焦点,为△PF1F2的内心,求点I的轨迹方程.解法一:如图,设内切圆I与F1F2的切点为H,半径为r,且F1H=y,F2H=z,PF1=x+y,PF2=x+z,,则.直线IF1与IF2的斜率之积:,而根据海伦公式,有△PF1F2的面积为因此有.再根据椭圆的斜率积定义,可得I点的轨迹是以F1F2为长轴,离心率e满足的椭圆,其标准方程为.解法二:令,则.三角形PF1F2的面积:,其中r为内切圆的半径,解得.另一方面,由内切圆的性质及焦半径公式得:从而有.消去θ得到点I的轨迹方程为:.本题中:,代入上式可得轨迹方程为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)2【解析】

(1)首先利用对圆C的参数方程(φ为参数)进行消参数运算,化为普通方程,再根据普通方程化极坐标方程的公式得到圆C的极坐标方程.(2)设,联立直线与圆的极坐标方程,解得;设,联立直线与直线的极坐标方程,解得,可得.【详解】(1)圆C的普通方程为,又,所以圆C的极坐标方程为.(2)设,则由解得,,得;设,则由解得,,得;所以【点睛】本题考查圆的参数方程与普通方程的互化,考查圆的极坐标方程,考查极坐标方程的求解运算,考查了学生的计算能力以及转化能力,属于基础题.18.(1)证明见解析;(2)证明见解析.【解析】

(1)要做证明,只需证明平面即可;(2)易得∥平面,平面,利用线面平行的性质定理即可得到∥,从而获得证明【详解】证明:(1)因为平面,平面,所以.因为,所以.又因为,平面,平面,所以平面.又因为平面,所以.(2)因为平面与交于点,所以平面.因为分别为的中点,所以∥.又因为平面,平面,所以∥平面.又因为平面,平面平面,所以∥,又因为是的中点,所以为的中点.【点睛】本题考查线面垂直的判定定理以及线面平行的性质定理,考查学生的逻辑推理能力,是一道容易题.19.(1)(2)分布列见解析,期望为20【解析】

利用相互独立事件概率公式求解即可;由题意知,随机变量可能的取值为0,10,20,30,分别求出对应的概率,列出分布列并代入数学期望公式求解即可.【详解】(1)由相互独立事件概率公式可得,(2)由题意知,随机变量可能的取值为0,10,20,30.,,,,所以,的概率分布列为0102030所以数学期望.【点睛】本题考查相互独立事件概率公式和离散型随机变量的分布列及其数学期望;考查运算求解能力;确定随机变量可能的取值,求出对应的概率是求解本题的关键;属于中档题、常考题型.20.(1);(2).【解析】

(1)把代入已知条件,得到关于的方程,得到的值,从而得到的值.(2)由(1)中得到的的值和已知条件,求出,再根据正弦定理求出边长.【详解】(1)因为,,所以,,所以,即.因为,所以,因为,所以.(2).在中,由正弦定理得,所以,解得.【点睛】本题考查三角函数公式的运用,正弦定理解三角形,属于简单题.21.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论