版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省武平县第二中学2023-2024学年高三二诊模拟试题(二)数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为()A. B. C. D.2.设函数的定义域为,命题:,的否定是()A., B.,C., D.,3.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.4.已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为()A. B. C. D.5.已知,,分别为内角,,的对边,,,的面积为,则()A. B.4 C.5 D.6.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为()A. B. C. D.7.执行如下的程序框图,则输出的是()A. B.C. D.8.已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是()A. B.C. D.9.设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是()A. B. C. D.10.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件11.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:①曲线有四条对称轴;②曲线上的点到原点的最大距离为;③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;④四叶草面积小于.其中,所有正确结论的序号是()A.①② B.①③ C.①③④ D.①②④12.在中,角、、所对的边分别为、、,若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在梯形中,∥,分别是的中点,若,则的值为___________.14.边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则______.15.设,则______.16.若函数在区间上有且仅有一个零点,则实数的取值范围有___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线与抛物线:交于,两点,且当时,.(1)求的值;(2)设线段的中点为,抛物线在点处的切线与的准线交于点,证明:轴.18.(12分)在孟德尔遗传理论中,称遗传性状依赖的特定携带者为遗传因子,遗传因子总是成对出现例如,豌豆携带这样一对遗传因子:使之开红花,使之开白花,两个因子的相互组合可以构成三种不同的遗传性状:为开红花,和一样不加区分为开粉色花,为开白色花.生物在繁衍后代的过程中,后代的每一对遗传因子都包含一个父系的遗传因子和一个母系的遗传因子,而因为生殖细胞是由分裂过程产生的,每一个上一代的遗传因子以的概率传给下一代,而且各代的遗传过程都是相互独立的.可以把第代的遗传设想为第次实验的结果,每一次实验就如同抛一枚均匀的硬币,比如对具有性状的父系来说,如果抛出正面就选择因子,如果抛出反面就选择因子,概率都是,对母系也一样.父系、母系各自随机选择得到的遗传因子再配对形成子代的遗传性状.假设三种遗传性状,(或),在父系和母系中以同样的比例:出现,则在随机杂交实验中,遗传因子被选中的概率是,遗传因子被选中的概率是.称,分别为父系和母系中遗传因子和的频率,实际上是父系和母系中两个遗传因子的个数之比.基于以上常识回答以下问题:(1)如果植物的上一代父系、母系的遗传性状都是,后代遗传性状为,(或),的概率各是多少?(2)对某一植物,经过实验观察发现遗传性状具有重大缺陷,可人工剔除,从而使得父系和母系中仅有遗传性状为和(或)的个体,在进行第一代杂交实验时,假设遗传因子被选中的概率为,被选中的概率为,.求杂交所得子代的三种遗传性状,(或),所占的比例.(3)继续对(2)中的植物进行杂交实验,每次杂交前都需要剔除性状为的个体假设得到的第代总体中3种遗传性状,(或),所占比例分别为.设第代遗传因子和的频率分别为和,已知有以下公式.证明是等差数列.(4)求的通项公式,如果这种剔除某种遗传性状的随机杂交实验长期进行下去,会有什么现象发生?19.(12分)如图,四棱锥中,底面,,点在线段上,且.(1)求证:平面;(2)若,,,,求二面角的正弦值.20.(12分)如图1,在边长为4的正方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.21.(12分)已知函数(1)若函数有且只有一个零点,求实数的取值范围;(2)若函数对恒成立,求实数的取值范围.22.(10分)已知数列满足:对一切成立.(1)求数列的通项公式;(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【详解】先画出图形,由球心到各点距离相等可得,,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,故选:C【点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题2、D【解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.3、D【解析】
根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.4、A【解析】
先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.【详解】设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.故选:A【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.5、D【解析】
由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出的值.【详解】解:,即,即.,则.,解得.,故选:D.【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角的正弦值余弦值.6、B【解析】
根据比例关系求得会旗中五环所占面积,再计算比值.【详解】设会旗中五环所占面积为,由于,所以,故可得.故选:B.【点睛】本题考查面积型几何概型的问题求解,属基础题.7、A【解析】
列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.8、A【解析】
首先根据为上的减函数,列出不等式组,求得,所以当最小时,,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果.【详解】由于为上的减函数,则有,可得,所以当最小时,,函数恰有两个零点等价于方程有两个实根,等价于函数与的图像有两个交点.画出函数的简图如下,而函数恒过定点,数形结合可得的取值范围为.故选:A.【点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.9、A【解析】
依题意可得即可得到,从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.10、C【解析】
根据充分条件和必要条件的定义结合对数的运算进行判断即可.【详解】∵a,b∈(1,+∞),∴a>b⇒logab<1,logab<1⇒a>b,∴a>b是logab<1的充分必要条件,故选C.【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.11、C【解析】
①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【详解】①:当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;②:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;③:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;④:由②可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.12、D【解析】
利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
建系,设设,由可得,进一步得到的坐标,再利用数量积的坐标运算即可得到答案.【详解】以A为坐标原点,AD为x轴建立如图所示的直角坐标系,设,则,所以,,由,得,即,又,所以,故,,所以.故答案为:2【点睛】本题考查利用坐标法求向量的数量积,考查学生的运算求解能力,是一道中档题.14、【解析】
取基向量,,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得.【详解】如图:设,又,且存在实数使得,,,,,,故答案为:.【点睛】本题考查了平面向量数量积的性质及其运算,属中档题.15、121【解析】
在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.【详解】令,得,令,得,两式相加,得,所以.故答案为:.【点睛】本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.16、或【解析】
函数的零点方程的根,求出方程的两根为,,从而可得或,即或.【详解】函数在区间的零点方程在区间的根,所以,解得:,,因为函数在区间上有且仅有一个零点,所以或,即或.【点睛】本题考查函数的零点与方程根的关系,在求含绝对值方程时,要注意对绝对值内数的正负进行讨论.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1;(2)见解析【解析】
(1)设,,联立直线和抛物线方程,得,写出韦达定理,根据弦长公式,即可求出;(2)由,得,根据导数的几何意义,求出抛物线在点点处切线方程,进而求出,即可证出轴.【详解】解:(1)设,,将直线代入中整理得:,∴,,∴,解得:.(2)同(1)假设,,由,得,从而抛物线在点点处的切线方程为,即,令,得,由(1)知,从而,这表明轴.【点睛】本题考查直线与抛物线的位置关系,涉及联立方程组、韦达定理、弦长公式以及利用导数求切线方程,考查转化思想和计算能力.18、(1),(或),的概率分别是,,.(2)(3)答案见解析(4)答案见解析【解析】
(1)利用相互独立事件的概率乘法公式即可求解.(2)利用相互独立事件的概率乘法公式即可求解.(3)由(2)知,求出、,利用等差数列的定义即可证出.(4)利用等差数列的通项公式可得,从而可得,再由,利用式子的特征可得越来越小,进而得出结论.【详解】(1)即与是父亲和母亲的性状,每个因子被选择的概率都是,故出现的概率是,或出现的概率是,出现的概率是所以:,(或),的概率分别是,,(2)(3)由(2)知于是∴是等差数列,公差为1(4)其中,(由(2)的结论得)所以于是,很明显,越大,越小,所以这种实验长期进行下去,越来越小,而是子代中所占的比例,也即性状会渐渐消失.【点睛】本题主要考查了相互独立事件的概率乘法公式、等差数列的定义、等差数列的通项公式,考查了学生的分析能力,属于中档题,19、(1)证明见解析(2)【解析】
(1)要证明平面,只需证明,,即可求得答案;(2)先根据已知证明四边形为矩形,以为原点,为轴,为轴,为轴,建立坐标系,求得平面的法向量为,平面的法向量,设二面角的平面角为,,即可求得答案.【详解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四边形为矩形.以为原点,为轴,为轴,为轴,建立坐标系,如图:则:,,,,:,设平面的法向量为,即,令,则,由题平面,即平面的法向量为由二面角的平面角为锐角,设二面角的平面角为即二面角的正弦值为:.【点睛】本题主要考查了求证线面垂直和向量法求二面角,解题关键是掌握线面垂直判断定理和向量法求二面角的方法,考查了分析能力和计算能力,属于中档题.20、(1)证明见解析;(2).【解析】
(1)利用线面平行的定义证明即可(2)取的中点,并分别连接,,然后,证明相应的线面垂直关系,分别以,,为轴,轴,轴建立空间直角坐标系,利用坐标运算进行求解即可【详解】证明:(1)在图1中,连接.又,分别为,中点,所以.即图2中有.又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人住宅装潢协议范本(2024年修订)版
- 2025年度叉车安全操作培训课程优化与推广合同4篇
- 2025版厂房买卖及土地使用权变更与售后服务合同4篇
- 专业咨询顾问合作合同(2024年度版)版B版
- 2025年度拆除宴会厅墙体改造项目施工协议4篇
- 2024陶瓷杯系列新品研发与市场推广合作合同3篇
- 2025年度企业股权激励计划税务筹划与合规合同3篇
- 2025年新能源电站设备购销合同协议4篇
- 2025年度医疗中心场地租赁及医疗设备租赁补充协议3篇
- 2025年度医疗设备存放租赁合同(2025年度)4篇
- 茶室经营方案
- 军队文职岗位述职报告
- 小学数学六年级解方程练习300题及答案
- 电抗器噪声控制与减振技术
- 中医健康宣教手册
- 2024年江苏扬州市高邮市国有企业招聘笔试参考题库附带答案详解
- 消费医疗行业报告
- 品学课堂新范式
- GB/T 1196-2023重熔用铝锭
- 运输行业员工岗前安全培训
- 公路工程安全风险辨识与防控手册
评论
0/150
提交评论