苏科版八年级数学上册重难点专项训练:一次函数(原卷版+解析)_第1页
苏科版八年级数学上册重难点专项训练:一次函数(原卷版+解析)_第2页
苏科版八年级数学上册重难点专项训练:一次函数(原卷版+解析)_第3页
苏科版八年级数学上册重难点专项训练:一次函数(原卷版+解析)_第4页
苏科版八年级数学上册重难点专项训练:一次函数(原卷版+解析)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题20易错易混集训:一次函数

聚焦考点

易错点一忽略一次函数中“静0”或正比例函数是特殊的一次函数致错

易错点二忽略自变量的取值范围致错

易错点三一次函数图象与坐标轴的交点位置不明确时忘记分类讨论

易错点一忽略一次函数中“静0”或正比例函数是特殊的一次函数致错

例题:(2022,安徽•淮北一中八年级阶段练习)当机为何值时,函数丫=(m-3•*2+3〃?是一次函数?求该

一次函数的表达式.

【变式训练】

一、选择题

1.(2022・四川成都•二模)若函数y=1)父时-2是一次函数,则机的值为()

A.-1B.±1C.1D.2

2.(2022・全国•八年级课前预习)已知y=(m-3)铲一2+1是一次函数,则根的值是()

A.l3B.3C.±3D.±2

3.(2022•云南昭通•八年级期末)若>="-2)NP+1表示一次函数,则左等于()

A.0B.2C.0或2D-2或0

4.(2021・湖南•衡阳市船山实验中学八年级阶段练习)若丫=(a一2)无。2-3+5是一次函数,则。的值是()

A.12B.2C.±2D.+-73

二、填空题

5.(2022•安徽•凤阳县大溪河中学八年级阶段练习)若函数y=(7〃-l)JH-5是一次函数,则根的值为.

6.(2022•四川省成都市石室联合中学八年级期末)若函数y=(%-2)9”」+1是关于x的一次函数,则上=

7.(2022•四川省遂宁市第二中学校八年级期中)已知函数尸(切-2)土耳+5是关于x的一次函数,则加=

8.(2022•湖南常德•八年级期末)已知函数丫=(租—1)尤/为常数).当相、"分别为、—

时,y是x的正比例函数.

三、解答题

9.(2021•全国•八年级)已知函数>=(k-1)x内+F-4是关于尤的一次函数,求(3A+2)2。12的值.

10.(2022•广东•深圳市龙岗区宏扬学校八年级期中)已知函数>=(2)/-3+4+”.

(1)当〃?,“为何值时,y是x的一次函数,并写出关系式;

(2)当〃%”为何值时,y是尤的正比例函数,并写出关系式.

11.(2022•全国•八年级)已知函数y=(〃z-2)x"同+〃z+7.

(1)当机为何值时,y是x的一次函数?

(2)若函数是一次函数,则x为何值时,y的值为3?

12.(2022•全国•八年级专题练习)已知函数>=(%+1)0向+“+4.

(1)当相,w为何值时,此函数是一次函数?

(2)当加,“为何值时,此函数是正比例函数?

易错点二忽略自变量的取值范围致错

例题:(2022•北京•前门外国语学校八年级阶段练习)已知蜡烛被燃烧的长度与燃烧时间成正比例,长为24cm

的蜡烛,点燃6分钟后,蜡烛变短了3.6cm,设蜡烛点燃x分钟后的长度为Am,

⑴请列出y与x的函数关系式,指出自变量取值范围;

(2)利用描点法画出此函数的图象;

(3)由图象指出此蜡烛几分钟燃烧完毕.

【变式训练】

1.(2021•安徽•合肥市第四十五中学八年级期末)一根蜡烛长20%点燃后每小时燃烧5c机燃烧时剩下的

高度〃(cm)与时间f(小时)的关系图象表示是()

2.(2021•河北保定•八年级期末)拖拉机开始工作时,油箱中有油24L,若每小时耗油4L则油箱中的剩油

量y(L)与工作时间x(小时)之间的函数关系式的图象是()

3.(2022•河南新乡•八年级期中)春节是中国民间最隆重盛大的传统节日,是集祈福禳灾,欢庆娱乐和饮食

为一体的民俗大节.人们在除夕点燃红红的蜡烛,以表除旧布新.已知一根蜡烛的长为30c%,点燃后蜡烛

每小时燃烧4c7外设蜡烛燃烧的时间为xh,蜡烛燃烧时剩下的长度为广m.

⑴直接写出y与%之间的函数关系式,并求出自变量x的取值范围.

(2)求当y=6时,x的值.

(3)在平面直角坐标系中画出y与x之间的函数图像,从图像中你还能得到哪些信息?写出一条即可.

4.(2021・吉林・长春市赫行实验学校九年级阶段练习)张师傅开车到某地送货,汽车出发前油箱中有油50

升,行驶一段时间,张师傅在加油站加油,然后继续向目的地行驶,已知加油前、后汽车都匀速行驶,汽

车行驶时每小时的耗油量一定.油箱中剩余油量Q(升)与汽车行驶时间f(时)之间的函数图象如图所示.

⑴张师傅开车行驶一小时后开始加油,本次加油—升.

⑵求加油前。与f之间的函数关系式.

(3)如果加油站距目的地320千米,汽车行驶速度为80千米/时,张师傅要想到达目的地,油箱中的油是否

够用?请通过计算说明理由.

5.(2022•湖南常德•八年级期末)某部队加油飞机接到命令,立即给一架正在飞行的运输飞机进行空中加

油.在加油的过程中,设运输飞机的油箱余油量为%吨,加油飞机的加油油箱的余油量为内吨,加油时间

为/分钟,%、为与,之间的函数关系如图.回答问题:

⑴加油飞机的加油油箱中装载了吨油;

⑵求加油过程中,运输飞机的余油量%(吨)与时间f(分钟)的函数关系式;

⑶运输飞机加完油后,以原来的速度继续飞行,需10小时达到目的地,油料是否够用?请通过计算说明理

由.

易错点三一次函数图象与坐标轴的交点位置不明确时忘记分类讨论

例题:(2022•浙江金华•八年级期末)如图,直线y=2x+4与X轴交于点A,与y轴交于点艮

⑴求A,8两点的坐标.

⑵过B点作直线8尸与x轴交于点尸,且使。尸=2。4,求直线2尸的函数关系式.

【变式训练】

1.(2022•黑龙江•哈尔滨市第六十九中学校九年级阶段练习)平面直角坐标系内一点4(2,1),过A点的直线

/与无轴相交所成的锐角等于45。,直线/与y轴交于点C,则C点坐标为.

4

2.(2022广东•深圳市福田区外国语学校八年级期中)如图,直线y=-§x+8与x轴和y轴分别交于A、B两

点,射线于点4若点C是射线针上的一个动点,点。是x轴上的一个动点,且以C、ZXA为顶

点的三角形与AAOB全等,则OD的长为.

3.(2022•山东•宁津县大庄中学八年级阶段练习)在平面直角坐标系中,。为原点,直线产fcc+b交x轴于A

(-3,0),交y轴于2,且三角形A02的面积为6,则上.

4.(2022•河南・清丰巩营乡二中八年级期末)已知一次函数>=履+优人二0)的图象经过点4(3,0),与,轴交

于点8,O为坐标原点.若财。8的面积为6,则该一次函数的解析式为.

5.(2022・湖北•宜昌市长江中学九年级开学考试)在平面直角坐标系中,直线y=+3与x轴、y轴交于

点A、8,点C在x轴负半轴上,若AABC为等腰三角形,则点C的坐标为.

6.(2022•北京市师达中学八年级阶段练习)已知一次函数y产质+2的图像与无轴交于点8(-2,0),与正比

例函数为的图像交于点A(La).

⑴分别求匕力的值;

⑵点C为无轴上一动点.如果AABC的面积是6,请求出点C的坐标.

专题20易错易混集训:一次函数

聚焦考点

易错点一忽略一次函数中“上和”或正比例函数是特殊的一次函数致错

易错点二忽略自变量的取值范围致错

易错点三一次函数图象与坐标轴的交点位置不明确时忘记分类讨论

易错点一忽略一次函数中“后o”或正比例函数是特殊的一次函数致错

例题:(2022•安徽•淮北一中八年级阶段练习)当为何值时,函数,=(m-3)户-2+3〃2是一

次函数?求该一次函数的表达式.

【答案】加=一3时是一次函数,y=-6x-9

【分析】根据一次函数的定义得到|词-2=1,求出他,舍去不符合的结果,即可得到函数

解析式.

【详解】解:由题意得:帆-2=1.解得机=3或-3,

当〃?=3口寸,k=m-3=0,

所以〃?=3应舍去,

所以机=一3,

这个一次函数表达式为>=-6%-9.

【点睛】此题考查了一次函数的定义,求一次函数的解析式,正确掌握一次函数的定义是解

题的关键.

【变式训练】

一、选择题

1.(2022,四川成都,二模)若函数y=(〃?—l)尤网―2是一次函数,则〃?的值为()

A.-1B.+1C.1D.2

【答案】A

【分析】由一次函数的定义:比例系数不为零,自变量的指数为1,可得答案.

【详解】解:由题意可得帆=1,怔1M,

国加二-1,

故选A

【点睛】本题考查一次函数的定义,准确掌握定义的要点是解题的关键.

2.(2022・全国•八年级课前预习)已知y=(m-3W"H+1是一次函数,则机的值是()

A.13B.3C.±3D.±2

【答案】A

【解析】略

3.(2022•云南昭通•八年级期末)若〉=(左-2)尤用1+1表示一次函数,则左等于()

A.0B.2C.0或2D-2或0

【答案】A

【分析】依据一次函数的定义可知依-1|=1且左-2x0,从而可求得上的值.

【详解】解:回函数尸(k-2)尤如叫3是一次函数,

0|<t-1|=1且1-2)

解得:k=0.

故选:A.

【点睛】此题考查一次函数的定义,注意一次项系数不为。是关键,难度一般.

4.(2021•湖南•衡阳市船山实验中学八年级阶段练习)若y=(a-2)V=+5是一次函数,则。

的值是()

A.-2B.2C.±2D.±73

【答案】A

【分析】根据形如广质+6(b0,公b是常数)的函数,叫做一次函数可得。J3=l,且小2工0,

再解即可.

【详解】解:由题意得:层一3=1,且小2工0,

解得:。=-2,

故选:A.

【点睛】此题主要考查了一次函数定义,关键是掌握一次函数形如"日+b(麻0,k、b是常

数),一次函数解析式的结构特征:心0;自变量的次数为1;常数项6可以为任意实数.

二、填空题

5.(2022•安徽•凤阳县大溪河中学八年级阶段练习)若函数y=(1)#-5是一次函数,则

m的值为.

【答案】-1

【分析】由一次函数的定义得出M=i且机-1#。,由此求解即可.

【详解】解:回函数y=(*l)铲-5是一次函数,

回同=1且7〃一1#0,

回加=±1且m

0m=-l

故答案为:-1.

【点睛】本题考查了一次函数的定义,形如>=区+万(麻0,k、。为常数)的式子,叫做一

次函数.正确理解一次函数定义是解答此题的关键.

6.(2022•四川省成都市石室联合中学八年级期末)若函数y=枭-2)中小+1是关于x的一

次函数,则%=.

【答案】-2

【分析】由一次函数定义得到阳-1=1,左-2W0,即可求出答案.

【详解】解:回函数y=(h2)9"」+1是关于x的一次函数,

13kl—1=1,左一2W0,

瞅=-2,

故答案为:-2.

【点睛】此题考查了一次函数的定义:形如:y=kx+b(%w0)的函数是一次函数,熟记定

义是解题的关键.

7.(2022•四川省遂宁市第二中学校八年级期中)己知函数,=(“一2)9盟+5是关于%的一

次函数,则爪=.

【答案】4

【分析】由一次函数的定义可知x的次数为1,即|3-词=Lx的系数不为0,即(祖-2)中0,

然后对|3-刊=1,(〃―2户0计算求解即可.

【详解】解:由题意知|3—训=1,(加一2)片。

解得机=2(舍去),加=4

故答案为:4.

【点睛】本题考查了一次函数,绝对值方程,解不等式.解题的关键根据一次函数的定义求

解参数.

8.(2022・湖南常德•八年级期末)已知函数y=(7〃-1)/+〃(nw为常数).当机、〃分别

为、时,y是尤的正比例函数.

【答案】-10

【分析】根据正比例函数的定义,可得答案.

【详解】解:由题意得:力「=1,且"2—IwO,n=0.

解得机=-1,〃=0,

当〃分别为-1、。时,y是x的正比例函数.

故答案为:-1,0.

【点睛】此题主要考查了正比例函数的定义,解题的关键是掌握形如'=h+仇人N0,k、b是

常数)的函数,叫做一次函数;形如,=履(左是常数,左4。)的函数叫做正比例函数.

三、解答题

9.(2021•全国•八年级)已知函数>=1)”+M-4是关于x的一次函数,求(3Z+2)

2。12的值.

【答案】1

【分析】先根据一次函数的定义求出左的值,然后代入(3人2产12计算即可

【详解】解:由题意得

|刈=1,且上130,

解得

k=-l,

国"+2产12=(-3+2产12=1.

【点睛】本题考查了一次函数的定义,一般地,形如广区+6,枭为常数,麻0)的函数叫做

一次函数.

10.(2022•广东•深圳市龙岗区宏扬学校八年级期中)已知函数丫=("-2)/七+4+".

(1)当机〃为何值时,y是%的一次函数,并写出关系式;

(2)当口,〃为何值时,y是%的正比例函数,并写出关系式.

【答案】(1)当m=-2,"为任意实数时,y是X的一次函数,关系式为〉=7尤+4+〃;(2)

当机=-2,〃=-4时,y是X的正比例函数,关系式为丫==^

【分析】(1)根据一次函数的定义即可求出结论;

(2)根据正比例函数的定义即可求出结论.

fm2-3=1

【详解】解:(1)由题意可得c八,〃可以取任意实数

解得:m=-2

团y=—4x+4+〃

团当d2〃为任意实数时,y是1的一次函数,关系式为y=-©+4+4

m2—3=1

(2)由题意可得加一2。0,

4+n=0

^\y=-4x

团当机二-2,〃二-4时,y是%的正比例函数,关系式为>=7%.

【点睛】此题考查的是根据一次函数和正比例函数的定义,求参数问题,掌握一次函数和正

比例函数的定义是解题关键.

11.(2022・全国•八年级)已知函数y=(凶-2)/驷+»i+7.

(1)当根为何值时,y是尤的一次函数?

(2)若函数是一次函数,则x为何值时,y的值为3?

【答案】(1)帆=一2时,y=(加一2)V-阿+根+7是一次函数;(2)x时,y的值为3.

【分析】(1)根据一次函数的定义即可列出关于根的方程和不等式,从而求出根的值;

(2)将产3代入一次函数中,即可求出x的值.

【详解】(1)由>=5-2)/问+根+7是一次函数得?一,?,

[加一2W0

解得m=-2.

故当机=一2时,y=(加一2)/-向+加+7是一次函数.

(2)由(1)可知y=-4x+5.

当>=3时,3=Tx+5,解得x=L

2

故当尤=g时,y的值为3.

【点睛】此题考查的是根据一次函数求函数中参数的值以及根据函数值求自变量的值,掌握

一次函数的定义是解决此题的关键.

12.(2022•全国•八年级专题练习)已知函数,=(〃计1)f0/+"+4.

(1)当机,w为何值时,此函数是一次函数?

(2)当m,九为何值时,此函数是正比例函数?

【答案】(1)当根=1,"为任意实数时,这个函数是一次函数;(2)当„7=1,行-4时,这个

函数是正比例函数.

【分析】(1)直接利用一次函数的定义分析得出答案;

(2)直接利用正比例函数的定义分析得出答案.

【详解】⑴根据一次函数的定义,得:

2-\m\=\,

解得:m=±1.

又回〃Z+1HO即m^-\,

团当机=1,w为任意实数时,这个函数是一次函数;

⑵根据正比例函数的定义,得:

«+4=0,

解得:m-+l,n=-4,

又如n+lMBPm^-1,

国当“2=1,w=-4时,这个函数是正比例函数.

【点睛】此题考查一次函数的定义,正比例函数的定义,解题关键在于利用其各定义进行解

答.

易错点二忽略自变量的取值范围致错

例题:(2022•北京•前门外国语学校八年级阶段练习)已知蜡烛被燃烧的长度与燃烧时间成正

比例,长为24cm的蜡烛,点燃6分钟后,蜡烛变短了3.6cm,设蜡烛点燃尤分钟后的长度

为Rm,

(3)由图象指出此蜡烛几分钟燃烧完毕.

【答案】⑴y与x之间的关系式是y=24-0.6x,0<x<40;

⑵见解析;

⑶此蜡烛40分钟燃烧完毕.

【分析】(1)根据蜡烛点燃后的长度=原长度-每分钟燃烧的长度x时间,建立函数关系式用

待定系数法求解,并求出自变量的取值范围;

(2)用描点法画出函数图像;

(3)从图像直接可以得出结论.

(1)

由题意可得,

3.6

y-24--尤=24-0.6x,

6

回y与龙之间的关系式是y=24-0.6x,

令y=0,则24-0.6x=0,

解得:无=40,

回自变量x的取值范围是:0W40;

(2)

列表为:

X040

jy==2244--00..6x2240

由图像可以看出:此蜡烛40分钟燃烧完毕.

【点睛】此题考查了根据题意中的等量关系建立函数关系式;能够根据函数解析式求得对应

的x的值,特别注意自变量的取值范围.

【变式训练】

1.(2021•安徽•合肥市第四十五中学八年级期末)一根蜡烛长20c%,点燃后每小时燃烧5c机

【答案】C

【分析】先根据题意求出九与f的函数关系式,再根据一次函数的图象特征即可得.

【详解】由题意得:h=20—5t,

■.­0<h<20,

:.0<20-5t<20,

解得0444,

即场与♦的关系式为/z=20-5《0WfW4),是一次函数图象的一部分,且场随1的增大而减小,

观察四个选项可知,只有选项C符合,

故选:C.

【点睛】本题考查了一次函数的图象,依据题意,正确求出一次函数的解析式是解题关键.

2.(2021•河北保定•八年级期末)拖拉机开始工作时,油箱中有油243若每小时耗油4L则

油箱中的剩油量y(1)与工作时间无(小时)之间的函数关系式的图象是()

【答案】D

【分析】根据剩余油量=邮箱里原有的油量-消耗的油量就可以表示出y与x之间的函数关系

式.

【详解】解:由题意,得

y=24-4x(0<x<6).

13K0,

回函数是降函数,函数图象是线段.

当x=0时,y=24,当y=0时,x-6.

回函数图象是经过(0,24)和(6,0)的线段.

故选D

【点睛】本题考查了运用剩余油量=邮箱里原有的油量-消耗的油量的关系的运用,一次函数

的解析式的运用,解答时求出函数的解析式是关键.

3.(2022•河南新乡•八年级期中)春节是中国民间最隆重盛大的传统节日,是集祈福禳灾,

欢庆娱乐和饮食为一体的民俗大节.人们在除夕点燃红红的蜡烛,以表除旧布新.已知一根

蜡烛的长为30cm,点燃后蜡烛每小时燃烧4c1,设蜡烛燃烧的时间为xh,蜡烛燃烧时剩下

的长度为Am.

⑴直接写出y与x之间的函数关系式,并求出自变量x的取值范围.

(2)求当y=6时,x的值.

(3)在平面直角坐标系中画出y与x之间的函数图像,从图像中你还能得到哪些信息?写出一

条即可.

[答案]⑴y=30_4.<0V尤省

(2)6

⑶见解析

【分析】(1)根据燃烧速度与总长度即可直接写出关系式,当总长烧完时对应的时间即为时

间上限;

(2)将y=6代入求出的解析式即可求解.

(3)根据(1)中求出的解析式,令x=0得出图像与y轴的交点,令产0得出图像与x轴的

交点,再连接并延长即可,再根据图像作答即可.

(1)

由题意得,y与x之间的函数关系式为y=30-4x,

回30—4x^0,

团自变量尤的取值范围是0

(2)

当y=6时,30-4%=6,

解得x=6;

(3)

当尤=0时,y=30,

当y=0时,30-4x=0,

解得》=二=7.5,

团画出的大致函数图像如图所示,

y/cm

由图像可知,蜡烛7.5小时就燃烧完.

【点睛】本题考查一次函数与实际问题的应用、一次函数图像的画法,根据题意找出函数关

系式,找到图像与坐标轴的交点是关键.

4.(2021•吉林・长春市赫行实验学校九年级阶段练习)张师傅开车到某地送货,汽车出发前

油箱中有油50升,行驶一段时间,张师傅在加油站加油,然后继续向目的地行驶,已知加

油前、后汽车都匀速行驶,汽车行驶时每小时的耗油量一定.油箱中剩余油量Q(升)与汽

车行驶时间r(时)之间的函数图象如图所示.

⑴张师傅开车行驶一小时后开始加油,本次加油—升.

⑵求加油前。与r之间的函数关系式.

⑶如果加油站距目的地320千米,汽车行驶速度为80千米/时,张师傅要想到达目的地,油

箱中的油是否够用?请通过计算说明理由.

【答案】⑴3,31

(2)2=-12/+50(0<Z<3)

⑶不够用,理由见解析

【分析】(1)根据函数图象中的数据,可以写出张师傅开车行驶几小时后开始加油,本次加

油多少升;

(2)根据函数图象中的数据,可以计算出加油前。与f之间的函数关系式;

(3)根据图象中的数据,可以计算出每小时耗油多少升,然后再根据后来加油后油箱中的

升数,即可计算出可以最多跑的路程,再与320比较大小即可.

(1)

解:由图象可得,

张师傅开车行驶3小时后开始加油,本次加油45-14=31(升),

故答案为:3,31.

(2)

解:设加油前。与f之间的函数关系式是。=公+6,

团点(0,50),(3,14)在该函数图象上,

f6=50

切,

\3k+b=14

即加油前。与t之间的函数关系式是Q=-12Z+50(0<f<3).

(3)

解:张师傅要想到达目的地,油箱中的油不够用,

理由:由图象可得,

汽车的耗油量为:(50-14)+3=12(升/时),

454-12x80

15

=——x80

4

=300(千米),

0300<320,

团张师傅要想到达目的地,油箱中的油不够用.

【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,

利用数形结合的思想解答.

5.(2022•湖南常德•八年级期末)某部队加油飞机接到命令,立即给一架正在飞行的运输飞

机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为%吨,加油飞机的加油油

箱的余油量为以吨,加油时间为f分钟,%、为与,之间的函数关系如图.回答问题:

⑴加油飞机的加油油箱中装载了吨油;

⑵求加油过程中,运输飞机的余油量%(吨)与时间,(分钟)的函数关系式;

⑶运输飞机加完油后,以原来的速度继续飞行,需10小时达到目的地,油料是否够用?请

通过计算说明理由.

【答案】⑴30

⑵%=2.%+40(0W0)

⑶油料够用,理由见解析

【分析】(1)根据运输飞机在没加油时,油箱中的油量,就可以得到.

(2)可以用待定系数法求解;

(3)加进30吨而油箱增加29吨,说明加油过程耗油量为1吨,依此耗油量便可计算是否

够用.

(1)解:由图象知,加油飞机的加油油箱中装载了30吨油.故答案为:30;

(0=0(k=29

(2)解:设%=公+6,把(0,40)和(10,69)代入得,“,解得八0

',''[10左+6=69[6=40

%=2.9f+40(0VtV10);

(3)解:油料够用.理由如下:根据图象可知运输飞机的耗油量为每分钟0.1吨,回10小时

耗油量为:10x60x0.1=60(吨)060<69,回油料够用.

【点睛】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具

备在直角坐标系中的读图能力.准确读出图中信息,加入30吨油而油箱只增加29吨对解好

本题很关键.

易错点三一次函数图象与坐标轴的交点位置不明确时忘记分类讨论

例题:(2022•浙江金华・八年级期末)如图,直线y=2x+4与x轴交于点A,与y轴交于点民

(1)求A,B两点的坐标.

⑵过2点作直线B尸与x轴交于点尸,且使OP=2OA,求直线8尸的函数关系式.

【答案】⑴4-2,0),8(0,4)

⑵y=x+4或者y=-x+4

【分析】(1)分别当x=0时和当y=0时,即可求出8、A的坐标;

(2)设尸点坐标为(。,0),即。尸=时,根据OP=2OA,可得8=同=4,即.=±4,分a=4

和a=-4两种情况讨论,用待定系数法求解即可.

当x=0时,y=2x+4=4,

即8点坐标为(0,4),

当y=0时,0=2x+4,即尤=-2,

即A点坐标为(-2,0),

故答案为:2点坐标为(0,4),A点坐标为(-2,0);

(2)

团尸点在x轴上,

回设尸点坐标为(。,0),即。尸=同,

0A点坐标为卜2,0),

回。4=2,

回OP=2OA,

回OP=4,

0OP=|a|=4,

即a=±4,

当a=4时,P点坐标为(4,0),

设8P的函数关系式为Y=履+》,

SB点坐标为(0,4),P点坐标为(4,0),

4k+b=0k=—l

0解得

6=4

即此时8P的函数关系式为>=-尤+4,

当。=-4时,尸点坐标为(-4,0),

同理可求:8尸的函数关系式为y=x+4,

综上:3尸的函数关系式为,=-工+4或者y=x+4.

【点睛】本题考查了求解一次函数与坐标轴交点以及求解一次函数解析式的知识,解题时要

注重分类讨论的思想,注意不要遗漏.

【变式训练】

1.(2022•黑龙江•哈尔滨市第六十九中学校九年级阶段练习)平面直角坐标系内一点4(2,1),

过A点的直线/与无轴相交所成的锐角等于45。,直线/与y轴交于点C,则C点坐标为.

【答案】(0,-1)或(0,3)

【分析】根据题意画出图形,然后分类讨论即可.

【详解】解:回过A点的直线/与x轴相交所成的锐角等于45。,如图:

当直线/在《的位置时,设乙的解析式为:y=x+b,

将点A(2,l)代入得,l=2+b,解得b=-l,

回乙的解析式为:y=x-i,

当尤=0时,y=-1,

回4与y轴的交点C(0,-l),

当直线/在4的位置时,设4的解析式为:y=-x+4,

将点4(2,1)代入得,l=-2+b,解得人=3,

团4的解析式为:y=-x+3,

当x=0时,y=3,

她与y轴的交点c(o,3),

综上:C点坐标为(0,T)或(0,3),

故答案为:(0,-1)或(。,3).

【点睛】本题考查了待定系数法求一次函数解析式,一次函数的性质,熟练掌握一次函数的

性质,运用分类讨论的思想解题是关键.

4

2.(2022•广东・深圳市福田区外国语学校八年级期中)如图,直线y=-§x+8与x轴和y轴

分别交于43两点,射线钻于点A,若点C是射线AP上的一个动点,点。是x轴

上的一个动点,且以C、D、A为顶点的三角形与全等,则。。的长为.

【答案】14或16##16或14

【分析】构造一线三直角模型全等一次,AD为斜边全等一次,得到两个答案.

4

【详解】因为直线y=-§x+8与X轴和y轴分别交于A、8两点,

所以8(0,8),A(6,0),

所以AB=,62+82=10-

因为以C、D、A为顶点的三角形与AAC®全等,如图,

所以当AAOB^ACDA时,

所以O8=ZM=8,

所以OD=ZM+Q4=6+8=14;

当^AOB=^DtCyA时,

所以A3=,A=10,

所以O'=〃/1+。4=6+10=16;

故答案为:14或16.

【点睛】本题考查了一次函数与坐标轴的交点,三角形全等的性质,熟练掌握一次函数与坐

标轴的交点是解题的关键.

3.(2022•山东・宁津县大庄中学八年级阶段练习)在平面直角坐标系中,O为原点,直线y=kx+b

交x轴于A(-3,0),交y轴于8,且三角形AOB的面积为6,则A=.

【答案】±4|

b

【分析】由直线丫=区+方过A点(-3,0),可得。4=3,-3k+b=O,即k=再由直线、=辰+。

交y轴于8点,可得2点坐标为(0力),即03=网,结合Sy®=6,可得]网=6,即有6=±4,

则上值可求.

【详解】回直线好船+方过A点(-3,0),

团OA=3,—3k+Z?=0,

即左=g,

回直线、=区+分交y轴于8点,

团当尤=0,有丁=人,

回8点坐标为(0,b),即。8=同,

113

05VAOB=-XAOXBO=-X3X|/?|=-|Z?|,

回$7AOB=6,

3

盯网=6,

回4=4,

帅=±4,

,Z7,4

回左=_=±_,

33

4

故答案为:

【点睛】本题主要一次函数与坐标轴交点的问题以及坐标系中三角形面积的问题,掌握一次

函数的图像与性质是解答本题的关键.

4.(2022•河南•清丰巩营乡二中八年级期末)已知一次函数y=kx+b(k丰0)的图象经过点43,

0),与,轴交于点8,。为坐标原点.若0AOB的面积为6,则该一次函数的解析式为

44

【答案]或y=gx+4

【分析】分两种情况:当点8在y轴正半轴时,当点8在y轴负半轴时,然后利用待定系数

法进行计算即可解答.

【详解】解:•.•点43,0),

/.OA=3,

•・・AAN的面积为6,

—OA-OB=6,

2

-x3OB=6,

2

,OB=4,

••.3(。,4)或(0,-4),

将A(3,0),3(0,4)代入)=丘+双左。0)得:

3k+b=0k-

,解得:3,

Z7=4

b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论