版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年北师大版七年级数学上册《第4章基本平面图形》同步练习题(附答案)一、单选题1.下列说法中错误的有(
)①线段有两个端点;②角的大小与我们画出的角的两边的长短无关;③线段上有无数个点;④两点之间线段最短;⑤两个锐角的和一定大于直角.A.1个 B.2个 C.3个 D.4个2.值日生每天值完日后,总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,很快就能把课桌摆得整整齐齐,他们这样做的道理是(
)A.两点之间,线段最短 B.两点确定一条直线C.点动成线 D.以上说法都不对3.明明用圆规画一个周长是31.4cm的圆,圆规两脚间的距离是(
)cm.A.15.7 B.5 C.10 D.14.以下关于图的表述,不正确的是()A.点C在直线BD外B.点D在直线AC上C.射线BC是直线AB的一部分D.直线AC和直线BD相交于点B5.从一个n边形的同一个顶点出发,连接对角线,若这些对角线把这个多边形分割成7个三角形,则n的值是()A.9 B.8 C.7 D.66.如果两种正多边形组合能密铺,则这两种多边形可以是(
)A.正三角形和正方形 B.正三角形和正五边形C.正方形和正六边形 D.正六边形和正八边形7.已知线段AB=6cm,C为AB的中点,D是AB上一点,CD=2cm,则线段BD的长为(A.1cm B.4cm C.1cm或5cm 8.如图,直线AB、CD交于点O,OE平分∠AOD,若∠1=36°,则∠COE等于(
)A.72° B.95° C.108° D.144°二、填空题9.写出仅用一种正多边形能把地面铺满的是.(写出一种即可)10.已知∠1=52°38′,那么∠1余角的大小为11.(1)图中可以用一个大写字母表示的角有;(2)以A为顶点的角有;(3)图中一共个角(不包括平角).12.一个圆形花坛的半径是3米,直径是米,它的面积是平方米,绕花坛走一圈,走了米.13.时钟从下午2时到晚上8时,时针沿顺时针方向旋转了度.14.如图,点B、C在线段AD上,M是AB的中点,N是CD的中点,若MN=8,BC=3,则AD的长是.15.若∠AOB=90°,OC是不同于OA、OB的射线,OM平分∠BOC,ON平分∠AOC,则∠MON的大小为.16.如图,点A在点O的北偏东60°方向上,点B在点O的南偏西30°方向上,则∠AOB的度数为.三、解答题17.比较48°22′118.度、分、秒的计算已知∠α=37°49′4(1)∠α+∠β;(2)∠β−∠α.19.如图A、B、C、D在同一平面内,请按下列要求画图:(1)过点A、B画直线;(2)画射线DC;(3)连接AC和BD相交于点E;(4)连结BC并延长BC到F,使CF=BC.20.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧.若AB=18,DE=9,线段DE在线段AB上移动.
(1)如图1,当E为BC中点时,求AD的长;(2)点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长.21.追本溯源题(1)来自于课本中的定义,请你完成解答,利用定义完成题(2).(1)如图1,点M把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的,AM=MB=AB.拓展延伸(2)如图2,线段AC上依次有D,B,E三点,AD=12DB,E是BC①求线段AB的长;②求线段DE的长.22.【实践活动】如图1,将一副三角板的直角顶点重合摆放.(1)判断∠ACE与∠BCD的大小关系,并说明理由;(2)探索∠ACB与∠DCE之间的数量关系,并说明理由;【拓展探究】(3)如图2,若∠ACD≠∠BCE,且∠ACD+∠BCE=180°,探索∠ACB与∠DCE之间的数量关系,并说明理由.参考答案:题号12345678答案ABBBAACC1.解:①线段有两个端点,正确;②角的大小与我们画出的角的两边的长短无关,正确;③线段上有无数个点,正确;④两点之间线段最短,正确;⑤两个锐角的和可以是直角、锐角、钝角,故错误;错误的共有1个,故选:A.2.解:总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,很快就能把课桌摆得整整齐齐,他们这样做的道理是:两点确定一条直线.故选:B.3.解:31.4÷2π=31.4÷2÷3.14=5故选:B.4.B解:A、点C在直线BD外,正确,不符合题意;B、点D在直线AC外,故原说法错误,符合题意;C、射线BC是直线AB的一部分,正确,不符合题意;D、直线AC和直线BD相交于点B,正确,不符合题意;故选:B.5.解:∵从一个n边形的同一个顶点出发,连接对角线,若这些对角线把这个多边形分割成7个三角形,∴n−2=7,解得:n=9.故选:A.6.解:A.正三角形,正方形的一个内角分别是60°,90°,由于60°×3+90°×2=360°,所以能密铺;B.正三角形和正五边形的一个内角分别是60°,144°,由于无法组合得到C.正方形和正六边形的一个内角分别是90°,120°,由于无法组合得到D.正六边形和正八边形的一个内角分别是120°,135°,由于无法组合得到360°,所以不能密铺;故选:A7.解:∵线段AB=6cm,C为AB∴AC=BC=1当点D如图1所示时,BD=BC+CD=3+2=5cm当点D如图2所示时,BD=BC−CD=3−2=1cm∴线段BD的长为1cm或5故选:C.
8.解:∵∠1=36°,∴∠AOD=180°−∠1=144°,∵OE平分∠AOD,∴∠DOE=1∴∠COE=180°−∠DOE=108°;故选:C9.解:用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是如:正三角形(答案不唯一);故答案为:正三角形(正三边形或正方形或正六边形,写出一种即可)10.解:∵∠1=52°3∴∠1余角的度数=90°−52°3故答案为:37°2211.解:(1)图中可以用一个大写字母表示的角有∠B故答案为:∠B,(2)以A为顶点的角有∠BAD,故答案为:∠BAD,(3)图中的角为:∠B,∠C,∠BAD,故答案为:7.12.解:圆形花坛的半径是3米,∴直径是3×2=6(米),∴面积为π×32=3.14×9=28.26故答案为:6,28.26,18.84.13.解:时钟从下午2时到晚上8时,时针沿顺时针方向旋转了一个平角,即180度;故答案为:180.14.解:∵MN=8,BC=3,∴MB+CN=MN−BC=5,∵M是AB的中点,N是CD的中点,∴MB=12AB∴12∴AB+CD=10,∴AD=AB+BC+CD=AB+CD+BC=10+3=13,故答案为:13.15.解:当射线OC在∠AOB的内部时,如图所示:∵ON平分∠AOC,∴∠CON=1又∵OM平分∠BOC,∴∠COM=1又∵∠AOB=∠AOC+∠BOC=90°,∴∠MON=∠CON+∠COM===45°;当射线OC在∠AOB的外部时,如图所示∵ON平分∠AOC,∴∠CON=1又∵OM平分∠BOC,∴∠COM=1又∵∠AOB=∠AOC+∠BOC=90°,∴∠MON=∠COM−∠CON===45°.故答案为:45°.16.解:如图:∵在点O的北偏东60°方向上,点B在点O的南偏西30°方向上,∴∠FOA=60°,∠BOG=30°,∴∠AOE=90°−60°=30°,∵∠BOG=30°,∠EOG=90°,∴∠AOB=30°+90°+30°=150°,故答案为:150°.17.解:0.37°=60'×0.37=22.所以0.37°=22因为22所以48.37°<48°2218.(1)解:∵∠α=37°49′4∠a+∠β=37°4=89°59=90°;(2)解:∵∠α=37°49′4∴∠B−∠a=52°10=51°69=14°2019.(1)解:如图,直线AB即为所求;(2)解:如图,射线DC即为所求;(3)解:如图,点E即为所求;(4)解:如图,线段CF即为所求.20.(1)解:∵AC=2BC,AB=18,∴AC+BC=2BC+BC=18,∴BC=6,AC=12,∵E为BC中点时,∴BE=1∴BD=DE+BE=9+3=12,∴AD=AB−BD=18−12=6;(2)解:当点E在点F的左侧,
,∵CE+EF=3,BC=6,∴BF=3,∴F是BC的中点,∴CF=BF=3,∴AF=AB−BF=18−3=15,∵AF=3AD,∴AD=1∵CE+EF=3,∴图2(b)这种情况求不出;当点E在点F的右侧,
,∵AC=12,CE+EF=CF=3,∴AF=AC−CF=9,∵AF=3AD,∴AD=1∵CE+EF=3,∴图3(b)这种情况求不出;综上所述,AD的长为3或5.21.解:(1)∵点M把线段AB分成相等的两条线段AM与MB,∴由中点定义知,点M叫做线段AB的中点,∴AM=MB=1故答案为:中点,12(2)①∵BE=1∴AC=5BE=5×2=10,∵E是BC的中点,∴BC=2BE=2×2=4,∴AB=AC−BC=10−4=6;②∵AD=1∴DB=2∴DE=DB+BE=4+2=6.22.解:(1)∠ACE=∠BCD,理由如下:依题意得:∠ACD=90°,∠ECB=90°,∴∠ACE+∠DCE=90°,∠DCE+∠BCD=90°,∴∠ACE=∠BCD.(2)∠ACB与∠DCE之间的数量关系:∠ACB+∠DCE=180°,理由如下:∵∠ACD=90°,∠ECB=90°,∴∠ACE+∠DCE=90°,∠DCE+∠BCD=90°,∵∠ACE+∠DCE+∠DCE+∠BCD=90°+90°,∴∠ACE+2∠DCE+∠BCD=180°,又∵∠ACB=∠ACE+∠DCE+∠BCD,∴∠ACB+∠DCE=∠ACE+∠DCE+∠BCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计师工作计划
- 2024年体育用品销售员提成及促销活动合同3篇
- 2024年建筑节能施工员聘用合同3篇
- 初中暑假学习计划
- 高炉炉渣综合利用工程可行性研究报告
- 三年级教学工作计划5篇
- 2022中学班主任个人工作计划
- 小学体育工作总结
- 公司助理个人实习工作
- 六年级毕业演讲稿范文集锦七篇
- 四年级下册混合运算100道及答案
- 浙江省宁波市慈溪市2023-2024学年八年级上学期期末数学试题(含答案)
- 【小学心理健康教育分析国内外文献综述4100字】
- 艺术疗愈行业分析
- 中医院肺病科年度工作计划
- 老年综合评估知情同意书
- 会议筹备工作分工表
- 2023火电机组深度调峰工况下的涉网性能技术要求
- 医学英语术语解密-福建医科大学中国大学mooc课后章节答案期末考试题库2023年
- 内燃机车点检方法探讨
- 2023初一语文现代文阅读理解及解析:《猫》
评论
0/150
提交评论