浙教版2024-2025学年数学七年级上册《有理数》单元测试(B卷)(附答案解析)_第1页
浙教版2024-2025学年数学七年级上册《有理数》单元测试(B卷)(附答案解析)_第2页
浙教版2024-2025学年数学七年级上册《有理数》单元测试(B卷)(附答案解析)_第3页
浙教版2024-2025学年数学七年级上册《有理数》单元测试(B卷)(附答案解析)_第4页
浙教版2024-2025学年数学七年级上册《有理数》单元测试(B卷)(附答案解析)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙教版2024-2025学年数学七年级上册第一章有理数单元测试(B

卷)

班级:姓名:

亲爱的同学们:

练习开始了,希望你认真审题,细致做题,不断探索数学知识,领略数学的美妙风景。运用所学

知识解决本练习,祝你学习进步!

一、选择题(每题3分,共30分)

1.在-2022,-(-3),0,(-4)2,|-2|中,既是负数又是整数的有()

A.1个B.2C.3个D.4个

2.在生产图纸上通常用0300士禺来表示轴的加工要求,这里0300表示直径是300mm,+0.2和

-0.5是指直径在(300-0.5)mm到(300+0.2)mm之间的产品都属于合格产品.现加工一批轴,尺寸

要求是045耳£,则下面产品合格的是()

A.44.6mmB.44.8mmC.45.3mmD.45.5mm

3.如图,数轴的单位长度为1,若点A,B表示的数互为相反数,那么点C表示的数是()

ACB

A.2B.1C.-2D.-1

4.数轴上的点B到原点的距离是6,则点B表示的是为()

A.12或一12B.6C.-6D.6或一6

5.小明在写作业时不慎将两滴墨水滴在数轴上,如图所示,此时墨迹盖住的整数共有()

个.

A.3B.4C.5D.6

6.已知a,b都是有理数,如果|a+b|=b-a,那么对于下列两种说法:①a可能是负数;②b—

定不是负数,其中判断正确的是()

A.①②都错B.①②都对C.①错②对D.①对②错

7.若则m一定()

A.大于1B.小于1C.不大于1D.不小于1

8.某茶叶厂抽检四盒茶叶的质量(单位:g),把超过标准质量的克数记为正数,不足标准质量

的克数记为负数,结果是:+1.3,-2.2,+0.9,-0.7,其中最接近标准质量的是()

A.+1.3B.-2.2C.+0.9D.-0.7

9.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()

-4-3-2-1012345’

A.n>3B.m<—1C.m>—nD.|m|>|n|

10.下列说法中正确的个数是()

①0是绝对值最小的有理数②相反数大于本身的数是负数③一个有理数不是整数就是分数

④一个有理数不是正数就是负数

A.1B.2C.3D.4

二、填空题(每空4分,共24分)

11.d是最大的负整数,e是最小的正整数,f的相反数等于它本身,贝Ud-e+2f的值

12.红富士苹果的包装箱上标明苹果质量为15kgi黑骁,如果某箱苹果重14.95kg,那么这箱

苹果标准.(填“符合”或“不符合”)

13.数轴上,一只蚂蚁从点A爬行4个单位长度到了表示-3的点B,则点A表示的数

是.

14.|a|=4,|b|=a-2,则a-b的值是.

15.式子4+|x-1]能取得的最小值是,这时x=;式子3-|2x-1|能取得

的最大值是,这时x=.

16.a、b是有理数,它们在数轴上的对应点的位置如下图所示,把a、-a、0、b、-b按照从

小到大并用连接为.

----1----1---------1---------►

a0b

三、解答题(共8题,共66分)

17.把下列各数分别填入相应的集合里.

-5,|-||,0,-3.14,等2006,+1.99,-(-6),0.010010001—,15%

(1)负数集合:{…};

(2)分数集合:{…};

(3)非负整数集合:{…};

(4)有理数集合:{…}.

18.已知有理数a,b,如图数a在数轴上对应的点是点A,b是负数,且b在数轴上对应的点

与原点的距离为3.5.

X

I_______|______|___________IIII,IA

-4-3-2-1O1234

(1)a=,b=

(2)将-21,0,-(-2),b在如图的数轴上表示出来,并用连接这些数.

19.某食品厂从生产的食品中抽出样品20袋,检测每袋的质量是否符合标准,超过的部分用正

数表示,不足的部分用负数表示,记录如表:

与标准质量的差值(克)-5-20136

袋数(袋)245513

(1)若每袋标准质量为350克,则这批抽样检测的样品的总质量是多少克?

(2)若该食品的包装袋上标有产品合格要求为“净重350±2克”,则这批样品的合格率为多

少?

20.如图,快递员小刘要从公司点A处出发,前往B,C,D等地派送包裹,规定:向上

向右走为正,向下向左走为负,并且行走方向顺序为先左右再上下.若从A到B记为:A-

B(+l,+4),从B到A记为:BrA(-l,-4),其中第一个数表示左右方向,第二个数表

),B-D(),C-D

(),

(2)若快递员小刘的行走路线为A-BrC-D,请计算该快递员走过的路程;

(3)若快递员小刘从A处去某E处的行走路线依次为(+2,+2),(+1,-1),(-2,+

3),(-1,-2),请在图中标出E的位置.

21.同学们都知道,|4-(-2)|表示4与-2的差的绝对值,实际上也可理解为4与-2两数在数轴

上所对应的两点之间的距离;同理鼠-31也可理解为x与3两数在数轴上所对应的两点之间的距

离.试探索:

(1)4-(-2)|=

(2)若|x-2|=5,求x的值;

(3)求|x-l|+|x+2|的最小值

22.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,点A到点B的距离记为AB,

我们规定:AB的大小可以用位于右边的点表示的数减去左边的点表示的数表示,即AB=b-a.

其中b是最大的负整数,a,c满足|a+3|与(c-5)2互为相反数.

___I______________、]I________________I__________1»I_______________I_______________________I_________

ADC___________DCAABC

(1)a=,b=,C=;

(2)以某点D为折点,将此数轴向右对折,若点A在点C的右边,且AC=2,则D表示的数

是;

(3)若点A以每秒2个单位长度的速度向右运动t秒时,5AB=AC.求出t的值.

23.已知点A,B在数轴上分别表示有理数a,b,点A,B之间的距离表示为AB.当A,B两点中

有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|—|a|=b—a=|a—b|.当A,B两点

都不在原点时,

①如图2,点A,B都在原点的右边,AB=OB-OA=|b|-|a|=b-a=|a-b];

②如图3,点A,B都在原点的左边,AB=OB—0A=|b|—|a|=—b—(—a)=a—b=|a—b|;

③如图4,点A,B在原点的两边,AB=OA+OB=|a|+|b|=a+(—b)=a—b=|a—b|.

综上数轴上A,B两点之间的距离AB=|a—b|,如数轴上表示4和一1的两点之间的距离是14—

(-1)=5

4。)B04B

1iii、

ab0ab

图1图2

BA0BoA

।i1»i1i♦

ba0b0a

图3图4

利用上述结论,解答以下问题:

(1)若数轴上表示有理数a和一2的两点之间的距离是3,则@=;

(2)若数轴上表示数a的点位于-5与2之间,求瓜+5|+瓜-21的值;

(3)若整数x,y满足(|x—11+|x+3|)(|y+l|+|y—2|)=12,求代数式x+y的最小值

和最大值.

24.对于含绝对值的算式,在有些情况下,可以不需要计算出结果也能将绝对值符号去掉,例

如:|7-6|=7-6;16-71=7-6;||=|,

观察上述式子的特征,解答下列问题:

(1)把下列各式写成去掉绝对值符号的形式(不用写出计算结果):

①I23-47I=;j|=;

(2)当a>b时,Ia-bI=;当a<b时,Ia-bI=

1-111111

(3)计算:++1厂引+…+12022.20211

答案解析部分

1.【答案】A

【解析】【解答】解:一(一3)=3,(_4/=16,|-2|=2,

在—2022,—(—3),0,(-4)2,I-2|中,既是负数又是整数的只有—2022,

故答案为:A.

【分析】先化简,再根据负数和整数的定义判断即可。

2.【答案】B

【解析】【解答】解:由题意得:合格范围为:45-0.3=44.7mm至必5+0.2=45.2mm,

而44.6<44.7,45.3>45.2,45.5>45,2

:.A,C,D都不合格,

V44.7<44.8<45.2

选项是合格品,

故答案为:B.

【分析】根据正数与负数所表示的意义,利用有理数的加减法算出加工轴的合格尺寸范围,然

后将四个选项所给的数值一一判断即可得出答案.

3.【答案】C

【解析】【解答】解:VAB=6,且点A,B表示的数互为相反数,

••.A表示的数为:-3,

C表示的数为:-2,

故答案为:C.

【分析】根据数轴上互为相反数的两个数位于原点的两侧,且到原点的距离相等,再结合AB=6

可得点A所表示的数,进而由数轴上的点所表示的数的特点得出位于点A右边一个单位长度的

点C所表示的数.

4.【答案】D

【解析】【解答】解::•数轴上的点B到原点的距离是6,

・•.点B表示的是为6或-6,

故答案为:D.

【分析】利用两点之间的距离公式求出答案即可。

5.【答案】D

【解析】【解答】解:大于-2.4小于3.1的整数有-2,-L0,1,2,3,一共6个整数.

故答案为:D

【分析】观察数轴可知,大于-2.4小于3.1的整数有-2,-1,0,1,2,3,即可得到墨迹盖住

的整数的个数.

6.【答案】B

【解析】【解答】解:♦.1a+b|=b-a,

(1)当a+b=b-a时,2a=0,

.*.a—0,

把a=0代入|a+b|=b-a,

Ib|=b,即bNO,

・••②b一定不是负数,正确;

(2)当-a—b=b-a时,2b=0,

.*.b=0,

把b=0代入|a+b|=b-a,

|a|=-a,即aWO,

;.a有可能是负数,①正确,

①②都正对.

故答案为:B.

【分析】利用绝对值的定义及非负性,分情两种情况,即当a+b=b-a和-a-b=b-a,再讨论结

果即可解答.

7.【答案】C

【解析】【解答】解:

故答案为:C.

【分析】根据绝对值的非负性可得-m+lNO,解之即可求解.

8.【答案】D

【解析】【解答】解::1+1.3|=1.3,|-2.2|=2.2,|+0.9|=0.9,|-0.7|=0.7,

而0.7<0,9<1,3<2,2,

•••抽检结果是“-0.7”的最接近标准质量.

故答案为:D.

【分析】求出记录各个数据的绝对值,根据正数与负数的意义,绝对值越小的越接近标准质

量,据此判断得出答案.

9.【答案】C

【解析】【解答】解:由题意可得:-l<m<0<2<n<3,即A、B不符合题意;

.*•-3<—n<—2,

—n<—2<—1<m,即m>-n,C符合题意;

VO<|m|<1,2<|n|<3,

|m|<|n|,D不符合题意;

故答案为:C.

【分析】结合数轴,再利用特殊值法逐项判断即可。

10.【答案】C

【解析】【解答】解:①0是绝对值最小的有理数,正确;

②相反数大于本身的数是负数,正确;

③一个有理数不是整数就是分数,正确;

④一个有理数不是正数就是负数,还可能是0,故④错误;

正确结论的个数为3个.

故答案为:C

【分析】利用绝对值的性质,可对①作出判断;相反数大于本身的数是负数,可对②作出判

断;利用整数和分数统称为有理数,可对③作出判断;利用正有理数、负有理数和。统称为有

理数,可对④作出判断;综上所述,可得到正确结论的个数.

11.【答案】-2

【解析】【解答】解:由题意知,d=-1,e=l,f=0,

所以d-e+2f=-1-1+0=-2.

故答案为:-2.

【分析】根据题意可得d=-l,e=l,f=0,代入计算即可。

12.【答案】不符合

【解析】【解答】解::•红富士苹果的包装箱上标明苹果质量为15kg1;;覆,

•••这箱苹果的合格质量的范围是:不超过15+0.02=15.02(kg),不低于15-0.03=14.97(kg),

又这箱苹果的实际质量为14.95kg,

•••这箱苹果的质量不符合标准.

故答案为:不符合.

【分析】根据正数与负数所表示的意义,可知这箱苹果的合格质量的范围是:不超过

(15+0.02)千克,不低于(15-0.03)千克,从而即可判断得出答案.

13.【答案】-7或1或1或-7

【解析】【解答】解:由题意得:—3—4=—7或—3+4=1.

故答案为:-7或1

【分析】分两种情况:蚂蚁从点A向左或向右爬行,据此解答即可.

14.【答案】2或6

【解析】【解答】解:•:|a|=4,

.\a=4或一4,

当a=4时,|b|=a—2=4-2=2,

b=2或b=—2,

当a=一4时,|b|=a-2=-4一2=-6,不存在绝对值为负数,

a=4,b=2或b=—2,

a—b=4—2=2或a—b=4—(—2)—6.

故答案为:2或6.

【分析】由绝对值的意义并结合已知条件可得a=4或a=-4,再分别把a=4或a=4代入|b|=a-2

计算可得b=2或b=-2,然后把a=4和b=2或b=-2分别代入所求代数式计算即可求解.

15.【答案】4;1;3;0.5

【解析】【解答】解:式子4+|x-1]能取得的最小值是4,这时x=l;式子3-12xT1能取得的

最大值是3,这时x=0.5.

故答案为:4,1,3,0.5.

【分析】根据绝对值都是非负数,加数最小时,和最小,减数最小时,差最大,可得答案.

16.【答案]-b<a<0<_a<b

【解析】【解答】解:•••由图可知,a<0<b,|a|<|b),

0<—a<b,—b<a<0,

—b<a<0<—a<b.

故答案为:-bVa<0<-aVb.

【分析】由数轴可知:a<0<b,|a|<|b],则-b〈a〈0,据此进行比较.

17.【答案】解:(1)负数集合:{-5,-3.14);

(2)分数集合:-3.14,竽,+1.99,15%};

(3)非负整数集合:(0,2006,-(-6));

(4)有理数集合:{-5,|-||,0,-3.14,竿,2006,+1.99,-(-6),15%).

【解析】【分析】负数大于0,整数和分数统称有理数,正分数和负分数统称分数,非负整数

包括正整数和0,据此逐一判断即可.

18.【答案】(1)3;-3.5

(2)解:一(-2)=2,

•••在数轴表示各点如下图所示:

bW-(-2)Ax

1♦I•_I-----1-----1----1-----A-----X-----

-4-3-2—101234

故b<-21<0<-(-2)

【解析】【解答]解:(1)・・・由图可知,点A在3处,

・•・a=3;

Vb在数轴上对应的点与原点的距离为3.5且b为负数,

:.b=—3.5.

故答案为:3,-3.5;

【分析】(1)根据A点在数轴上的位置直接写出a表示的数,再由b到原点的距离为3.5且b

为负数可得出b的值;

(2)根据数轴上的点所表示的数的特点:原点表示数0,原点右边的点表示正数,原点左边的

点表示负数,在数轴上找出表示各个数的点,用实心的小黑点作好标注,并在小黑点上方写出

该点所表示的数,最后根据数轴上的点所表示的数,右边的数总比左边的大即可比出大小.

19.【答案】(1)解:超出的质量为:

-5X2+(-2)X4+0X5+1X5+3X1+6X3=-10-8+0+5+3+18=8(克),

总质量为:350X20+8=7008(克),

答:这批抽样检测样品总质量是7008克.

(2)解:因为绝对值小于或等于2的食品的袋数为:

4+5+5=14(袋),

所以合格率为:lixi00%=70%,

答:这批样品的合格率为70%.

【解析】【分析】(1)将表格中样品20袋所记录的数据相加,再加上20袋的标准质量即得结

论;

(2)找出绝对值小于或等于2的食品的袋数,除以20再乘以100%即得结论.

20.【答案】(1)+3;+4;+3;—2;+1;—2

(2)解:快递员小刘按路线A->B-CD行走的路程为:|+1|+|+4|+|+2|+|++|—

2|

=1+4+2+1+2=10;

【解析】【解答】解:(1)由题意可知:A-C(+3,+4),BrD(+3,-2),C-D(+L-

2),

故答案为:+3,+4;+3,—2;+1,—2.

【分析】(1)根据向上向右走为正,向下向左走为负,并且行走方向顺序为先左右再上下进行

解答;

(2)求出快递员小刘左右及上下移动的各个距离的和即可;

(3)根据每次的行走路线依次标注各位置,进而确定出点E的位置.

21.【答案】(1)6

(2)解:(2)因为|x-2|=5,

所以x和2两数在数轴上的对应点之间的距离为5,所以x=2+5=7或x=2-5=-3.

(3)解:由题意,可知|x-L|+|x+2|表示数x到1和-2的距离之和.

当-2WxWl时,如图1:

-2-UOI234

出I

此时,数x到1和-2的距离之和为3

当x〈-2时,如图2:

~-2-101234"

国2

此时,数X到1和-2的距离之和大于3:

当.xNl时,如图3:

H93

此时,数x到1和-2的距离之和大于3.

综上所述,1x-l+|x+2]的最小值为3.

【解析】【解答】解:(1)4-(-2)=4+2]=6=6,

故答案为:6;

【分析】(1)由于绝对值符号具有括号的作用,故先算绝对值符号里面的运算,最后再根据绝

对值的性质化简即可;

(2)此题就是表示x和2两数在数轴上的对应点之间的距离为5,进而分表示x的点在表示2

的点的左边左边与右边两种情况,根据左减右加计算即可;

(3)此题表示表示数x的点到表示数1和-2的点的距离之和,分三类讨论:①当-2WxWl

时,②当x>l时,③当x〈-2时,分别画出示意图,数形结合即可得出答案.

22.【答案】(1)-3;-1;5

(2)2

(3)解:分三种情况:①当点A在点B左侧时,则

5[—1—(—3+2t)]=5—(—3+2t),

解得:t=J;

②当点A在点B点C之间时,则

5[—3+2t—(—1)]—5—(—3+2t)

解得:t=f,

③当点A在点C右侧时,:5AB=AC,

•••此情况不存在,

综上,当5AB=AC,t秒的值为1秒或慨秒.

【解析】【解答]解:(1)c满足|a+3|与(C-5)2互为相反数,

a+3=0,c—5=0,

・・a=3,c=5,

・・・b是最大的负整数,

.\b=-1;

故答案为:—3,-1,5;

(2)VAC=2,c=5,

•••对叠后点A表示的数为5+2=7,

设点D表示的数为x,由折叠可得:

5_—x+2=2117—3)],

解得:x=2,

...D表示的数是2;

故答案为:2;

【分析】(1)根据互为相反数的两个数的和为0及绝对值和偶数次嘉的非负性,由两个非负数

的和为0,则每一个数都等于0可求出a、c的值;进而根据最大的负整数是-1可得b的值;

(2)易得折叠后与点A重合的点所表示的数7,设点D表示的数为x,根据两点间的距离公式

可得点A到点D的距离等于折叠后与点A重合的点到原来点A的距离的一半列出方程,求解即

可;

(3)根据数轴上的点所表示的数的特点可得t秒后点A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论