版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省闽粤联合体2024年高三下学期期初检测试题数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是()A.E B.F C.G D.H2.已知,则“直线与直线垂直”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知,满足约束条件,则的最大值为A. B. C. D.4.已知函数,则()A.2 B.3 C.4 D.55.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()A. B. C. D.6.已知抛物线经过点,焦点为,则直线的斜率为()A. B. C. D.7.在中,内角所对的边分别为,若依次成等差数列,则()A.依次成等差数列 B.依次成等差数列C.依次成等差数列 D.依次成等差数列8.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则9.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是()A.圆,但要去掉两个点 B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点10.设全集U=R,集合,则()A. B. C. D.11.已知实数集,集合,集合,则()A. B. C. D.12.已知等差数列的前n项和为,且,则()A.4 B.8 C.16 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知数列为等差数列,数列为等比数列,满足,其中,,则的值为_______________.14.已知集合,若,且,则实数所有的可能取值构成的集合是________.15.在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为_____.16.在的展开式中的系数为,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.18.(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.(1)求证:平面;(2)求证:平面.19.(12分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元.若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用.现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.20.(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.21.(12分)已知函数.(Ⅰ)求的值;(Ⅱ)若,且,求的值.22.(10分)已知.(1)若,求函数的单调区间;(2)若不等式恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【详解】由,所以,对应点.故选:C【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.2、B【解析】
由两直线垂直求得则或,再根据充要条件的判定方法,即可求解.【详解】由题意,“直线与直线垂直”则,解得或,所以“直线与直线垂直”是“”的必要不充分条件,故选B.【点睛】本题主要考查了两直线的位置关系,及必要不充分条件的判定,其中解答中利用两直线的位置关系求得的值,同时熟记充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.3、D【解析】
作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.4、A【解析】
根据分段函数直接计算得到答案.【详解】因为所以.故选:.【点睛】本题考查了分段函数计算,意在考查学生的计算能力.5、A【解析】
每个县区至少派一位专家,基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率.【详解】派四位专家对三个县区进行调研,每个县区至少派一位专家基本事件总数:甲,乙两位专家派遣至同一县区包含的基本事件个数:甲,乙两位专家派遣至同一县区的概率为:本题正确选项:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.6、A【解析】
先求出,再求焦点坐标,最后求的斜率【详解】解:抛物线经过点,,,,故选:A【点睛】考查抛物线的基础知识及斜率的运算公式,基础题.7、C【解析】
由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【详解】依次成等差数列,,正弦定理得,由余弦定理得,,即依次成等差数列,故选C.【点睛】本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.8、D【解析】试题分析:,,故选D.考点:点线面的位置关系.9、A【解析】
根据题意可得,即知C在以AB为直径的圆上.【详解】,,,又,,平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【点睛】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.10、A【解析】
求出集合M和集合N,,利用集合交集补集的定义进行计算即可.【详解】,,则,故选:A.【点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题.11、A【解析】
可得集合,求出补集,再求出即可.【详解】由,得,即,所以,所以.故选:A【点睛】本题考查了集合的补集和交集的混合运算,属于基础题.12、A【解析】
利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意,判断出,根据等比数列的性质可得,再令数列中的,,,根据等差数列的性质,列出等式,求出和的值即可.【详解】解:由,其中,,可得,则,令,,可得.①又令数列中的,,,根据等差数列的性质,可得,所以.②根据①②得出,.所以.故答案为.【点睛】本题主要考查等差数列、等比数列的性质,属于基础题.14、.【解析】
化简集合,由,以及,即可求出结论.【详解】集合,若,则的可能取值为,0,2,3,又因为,所以实数所有的可能取值构成的集合是.故答案为:.【点睛】本题考查集合与元素的关系,理解题意是解题的关键,属于基础题.15、【解析】
利用导数的几何意义可求得函数在处的切线,再根据切线与圆存在公共点,利用圆心到直线的距离满足的条件列式求解即可.【详解】解:由条件得到又所以函数在处的切线为,即圆方程整理可得:即有圆心且所以圆心到直线的距离,即.解得或,故答案为:.【点睛】本题主要考查了导数的几何意义求解切线方程的问题,同时也考查了根据直线与圆的位置关系求解参数范围的问题,属于基础题.16、2【解析】
首先求出的展开项中的系数,然后根据系数为即可求出的取值.【详解】由题知,当时有,解得.故答案为:.【点睛】本题主要考查了二项式展开项的系数,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)按绝对值的定义分类讨论去绝对值符号后解不等式;(2)不等式转化为,求出在上的最小值即可,利用绝对值定义分类讨论去绝对值符号后可求得函数最小值.【详解】解:(1)或或解得或或无解综上不等式的解集为.(2)时,,即所以只需在时恒成立即可令,由解析式得在上是增函数,∴当时,即【点睛】本题考查解绝对值不等式,考查不等式恒成立问题,解决绝对值不等式的问题,分类讨论是常用方法.掌握分类讨论思想是解题关键.18、(1)见解析;(2)见解析【解析】
(1)根据,分别是,的中点,即可证明,从而可证平面;(2)先根据为正三角形,且D是的中点,证出,再根据平面平面,得到平面,从而得到,结合,即可得证.【详解】(1)∵,分别是,的中点∴∵平面,平面∴平面.(2)∵为正三角形,且D是的中点∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【点睛】本题考查直线与平面平行的判定,面面垂直的性质等,解题时要认真审题,注意空间思维能力的培养,中档题.19、(1);(2)分布列见详解,期望为;(3)余下所有零件不用检验,理由见详解.【解析】
(1)计算的频率,并且与进行比较,判断中位数落在的区间,然后根据频率的计算方法,可得结果.(2)计算位于之外的零件中随机抽取个的总数,写出所有可能取值,并计算相对应的概率,列出分布列,计算期望,可得结果.(3)计算整箱的费用,根据余下零件个数服从二项分布,可得余下零件个数的期望值,然后计算整箱检验费用与赔偿费用之和的期望值,进行比较,可得结果.【详解】(1)尺寸在的频率:尺寸在的频率:且所以可知尺寸的中位数落在假设尺寸中位数为所以所以这个零件尺寸的中位数(2)尺寸在的个数为尺寸在的个数为的所有可能取值为1,2,3,4则,,所以的分布列为(3)二等品的概率为如果对余下的零件进行检验则整箱的检验费用为(元)余下二等品的个数期望值为如果不对余下的零件进行检验,整箱检验费用与赔偿费用之和的期望值为(元)所以,所以可以不对余下的零件进行检验.【点睛】本题考查频率分布直方图的应用,掌握中位数,平均数,众数的计算方法,中位数的理解应该从中位数开始左右两边的频率各为0.5,考验分析能力以及数据处理,属中档题.20、(1);(2)【解析】
(1)利用正弦定理,转化为,分析运算即得解;(2)由为的重心,得到,平方可得解c,由面积公式即得解.【详解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于为的重心故,∴解得或舍∴的面积为.【点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.21、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)直接代入再由诱导公式计算可得;(Ⅱ)先得到,再根据利用两角差的余弦公式计算可得.【详解】解:(Ⅰ);(Ⅱ)因为所以,由得,又因为,故,所以,所以.【点睛】本题考查了三角函数中的恒等变换应用,属于中档题.22、(1)答案不唯一,具体见解析(2)【解析】
(1)分类讨论,利用导数的正负,可得函数的单调区间.(2)分离出参数后,转化为函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年中国玻璃温室市场调查研究报告
- 2024年03月中国光大银行吉安分行招考笔试历年参考题库附带答案详解
- 2024年版综合楼租赁合同3篇
- 2025年度跨境电商交易赔偿协议范本3篇
- 2024年度私人包车带司机自驾游全程陪同合同3篇
- 2024年中国商盟管理软件市场调查研究报告
- 2024年货车年检服务与费用合同
- 北京2025年首都医科大学附属北京佑安医院(北京肝病研究所)招聘笔试历年典型考点(频考版试卷)附带答案详解
- 2024年中国单机版图书/音像管理系统市场调查研究报告
- 2024年青少年活动中心商铺租赁中介服务与项目合作3篇
- 2024年广东省第一次普通高中学业水平合格性考试历史试卷(解析版)
- 部编版一年级上册语文期末试题含答案
- 2025届东莞东华高级中学高一生物第一学期期末考试试题含解析
- 春望(微教学设计) 苏教版
- 新疆巴音郭楞蒙古自治州库尔勒市2024-2025学年高一生物上学期期末考试试题
- 2024年吉林省吉林市丰满区数学四年级第一学期期末预测试题含解析
- 老兵和军马(2023年河南中考语文试卷记叙文阅读题及答案)
- 非人力资源管理者的人力资源管理
- 山东省市级县级单位名称及市县代码表
- 物理-福建省福州市2024-2025学年高三年级上学期第一次质量检测(福州一检)试题和答案
- 新课标背景下:初中生物学跨学科主题学习课程设计与教学实施
评论
0/150
提交评论