版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
...wdwd...PAGE1...专业方面资料...wd...2018年高考数学答题策略与答题技巧一、2012-2017历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的局部,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。一般来说,小题思考1分钟还没有建设解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。切记不要“小题大做”。注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。多写不会扣分,写了就可能得分。三、答题技巧1.函数或方程或不等式的题目,先直接思考后建设三者的联系,首先考虑定义域。2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建设关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择别离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,假设与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建设关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开场就建系完成;注意向量角与线线角、线面角、面面角都不一样,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;4.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否认写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。四.每分必争1.答题时间共120分,而你要答分数为150分的考卷,算一算就知道,每分钟应该解答1分多的题目,所以每1分钟的时间都是重要的。试卷发到手中首先完成必要的检查(是否有印刷不清楚的地方)与填涂。之后剩下的时间就马上看试卷中可能使用到的公式,做到心中有数。用心算简单的题目,必要时动一动笔也不是不行(你是写名字或是写一个字母没有人去区分)。2.在分数上也是每分必争。你得到89分与得到90分,虽然只差1分,但是有本质的不同,一个是不合格一个是合格。高考中,你得556分与得557分,虽然只差1分,但是它决定你是否可以上重本线,关系到你的一生。所以,在答卷的时候要精益求精。对选择题的每一个选择支进展评估,看与你选的相似的那个是不是更准确填空题的范围书写是不是集合形式,是不是少或多了一个端点是不是有一个解应该舍去而没舍解答题的步骤是不是按照公式、代数、结果的格式完成的,应用题是不是设、列、画(线性归化)、解、答根据已知条件你还能联想到什么把它写在考卷上,也许它就是你需要的关键的1分,为什么不去做呢3.答题的时间紧张是所有同学的感觉,想让它变成宽松的方法只有一个,那就是学会放弃,准确的判断把该放弃的放弃,就为你多得1分提供了前提。4.冷静一下,外表是耽误了时间,其实是为自己赢得了时机,可能创造出奇迹。在头脑混乱的时候,不防停下来,喝口水,深吸一口气,再慢慢呼出,就在呼出的同时,你就会得到灵感。5.题目分析受挫,很可能是一个重要的已知条件被你忽略,所以重新读题,仔细读题才能有所发现,不能停留在某一固定的思维层面不变。联想你做过的类似的题目的解题方法,把不熟悉的转化为你熟悉的也许就是成功。6.高考只是人生的重要考试之一,其实人生是由每一分钟组成的。把握好人生的每一分钟才能真正把握人生。其实真正的高考是在你生活的每1分钟里。五、五大解题思想数学思想是对数学知识和方法的本质认识,数学方法是解决数学问题、表达数学思想的手段和工具,数学思想方法的教学在数学教学中是极其重要的。因此学生在做题的时候不仅仅只局限于做题,而是要考虑这道题考的是什么思想用的什么方法,即做一道题会一类题。1、特殊与一般的思想用这种思想解选择题有事特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的解题策略,也同样有用。2、数形结合思想中学数学研究的对象可分为两大类:一类是数、一类是形,但数与形是有联系的,这个联系称之为形数结合或者数形结合。它既是寻找问题解决切入点的“法宝”,有事优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利用正确地理解题意、快速地解决问题。函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建设函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进展函数与方程间的相互转化。分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进展下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,公式的限制、某些定理、数学运算法则,图形位置的不确定性,变化等均可能一起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的位置量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。六、选择题数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。12个选择题,假设能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。选择题应做到准确而且快速,应“多一点想的,少一点算的”,“不算就不会算错”因此,在解答时应该突出一个"选"字,尽量减少书写解题过程,在对照选择支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取。我们不要给任何“方法”做出限定,重要的是这种解答的思想方式。选择题只管结果,不管中间过程,因此在解题过程中可以大胆的简化中间过程,但简化毕竟是简化,数学是一门具有高度精细逻辑性的严谨的科学,没有充分的依据,所有的条件反射都是错误的,只有找到对的依据、逻辑思维过程、验证,答案才可确定,“做题不可以凭印象来,凡‘差不多就是’的都是错误的,无十足把握的都是错误的”。选择题毕竟是简单的甚至可以口算的,思路也是简单的,如果没思路、做不下去或觉得复杂,或者发现做的时候需要大量计算的时候,可以明确的告诉自己,你的方向错了,可以换一种思路了。1.直接法中选择题是由计算题、应用题、证明题、判断题改编成的时,可直接按计算题、应用题、证明题、判断题来做,确定答案之后,从选项里找即可。2.筛选法(排除法)去伪存真,筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。如筛去不合题意的以后,结论只有一个,则为应选项。3.特殊值法根据答案中所提供的信息,选择某些特殊情况进展分析,或某些特殊值进展计算,或将字母参数换成具体数值代入,或将比例数看成具体数带人,总之,把一般形式变为特殊形式,再进展判断往往十分简单。4.验证法(代入法)将各选项逐个代入题干中,进展验证、或适中选取特殊值进展检验、或采取其他验证手段,以判断选择支正误的方法。5.图象法可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。6.试探法综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建设一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。7.猜答(语感法)选择题存在凭猜答得分的可能性,我们称为机遇分。这种机遇对每个考生是均等的。猜答,并不是“点一点二点三点四,点住谁了算谁嘞”或是“鸡毛蒜皮”类的。而是在筛选后的选项里进展猜答,而且猜时不能用上面说的类似弱智法,要看着谁顺眼就选谁,看哪个更可能选哪个。在答题中因找不到充分的根据确定正确选项时,可以将试题默读几遍,自己感觉读起来不别扭,语言流畅顺口,即可确定为答案。这方法是万不得已之时才用的,因为大多数人在考试上一遇到稍微难一点点的题就心慌,为了给后面的大题留时间,此时就要用此法。8.特征法(对题设和选择支的特点进展分析,发现规律,归纳得出正确判断的方法)。根据题干的特征,又加上做了那么多的题,一看题的特征再一看选项,条件反射,就能选出,但还要按部就班地去做用验证法得正确答案。利用选项之间的关系,即利用干扰选项做题。选择题除了正确答案外,其他的都是干扰选项,除非是乱出的选项,否则都是可以利用选项的干扰性做题。一般出题者不会随意出个选项,总是和正确答案有点关系,或者是可能出错的结果,我们就可以借助这个命题过程得出正确的结论。如两个选项意思完全相反,则两个之间必有正确答案。四个选项中有一个选项不属于同一范畴,那么,余下的三项则为选择项。如有两个选项不能归类时,则根据优选法选出其中一个选项作为自己的选择项。答案只有一个,且答案是与其它选项比出来的。利用题干与选项的联系。选择题必定考察课本知识,做题过程中,可以判断和课本哪个知识相关那个选项与这个知识点无关的可立即排除,与题干联系不太严密的大半排除,答非所问的立即排除。9.联想法(同似法)(归结法)直接法的变形法有时一读到题就有种做过的感觉,那么此时,你就联想以前做过的题和总结的结论,看是否一样伙相似,寻找联系及区别,此时要严谨,千万不能出现思维错误思维定势,不能差不多就是它了10.估值法有些问题,由于题目条件限制,无法(或没有必要)进展精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。七、考前准备
1.调适心理,增强信心
1)合理设置考试目标,创设宽松的应考气氛,以平常心对待高考;
2)合理安排饮食,提高睡眠质量;
3)保持良好的备考状态,不断进展积极的心理暗示;
4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。
2.悉心准备,不紊不乱
1)重点复习,查缺补漏。对前几次模拟考试的试题分类梳理、整合,既可按知识分类,也可按数学思想方法分类。强化联系,形成知识网络构造,以少胜多,以不变应万变。
2)查找错题,分析病因,对症下药,这是重点工作。
3)阅读《考试说明》和《试题分析》,确保没有知识盲点。
4)回归课本,回归根基,回归近年高考试题,把握通性通法。
5)重视书写表达的标准性和简洁性,掌握各类常见题型的表达模式,防止“会而不对,对而不全”现象的出现。
6)临考前应做一定量的中、低档题,以到达熟悉基本方法、典型问题的目的,一般不再做难题,要保持清醒的头脑和良好的竞技状态。
3.入场临战,通览全卷
最容易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此时保持心态平稳是非常重要的。刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先通览全卷,尽量从卷面上获取最多的信息,
为实施正确的解题策略作铺垫,一般可在五分钟之内做完下面几件事:
1)填写好全部考生信息,检查试卷有无问题;
2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单项选择择或填空题(一旦解出,信心倍增,情绪立即稳定);
3)对于不能立即作答的题目,可一边通览,一边粗略地分为
A、B
两类:A
类指题型比较熟悉、容易上手的题目;B
类指题型比较陌生、自我感觉有困难的题目,做到心中有数。2012-2017历年高考题1、假设P(2,-1)为圆的弦AB的中点,则直线AB的方程是()A、B、C、D、2、已知变量、满足约束条件,则的取值范围是()A、B、C、D、3、曲线与直线有两个公共点时,的取值范围是()A、B、C、D、4、函数在区间A上是增函数,则区间A是()A、B、C、D、5、在各项均为正数的等比数列中,假设,则()A、12B、10C、8D、6、假设函数是偶函数,则的对称轴是()A、B、C、D、7、集合与集合之间的关系是()A、B、C、D、8、当时,恒成立,则的一个可能的值是()A、5B、C、D、9、直线与圆的图象可能是()xxyOxyOxyOxyOA.B.C.D.10、设函数,假设,则的取值范围为()A.(-1,1)B.()C.D.xyO1211、xyO12A.B.C.(1,2)D.12、对任意都有:()A.B.C.D.2018年高考模拟题1、过点A(1,-1),B(-1,1)且圆心在直线上的圆的方程是()A.B.C.D.2、函数的图像与函数的图像交点的个数为()A.1B.2C.3D.43、已知集合,,则()A.B.C.D.4、等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为()(A)130(B)170(C)210(D)2605、函数y=sin(2x+)的图象的一条对称轴的方程是()(A)x=-(B)x=-(C)x=(D)x=6、在内,使成立的的取值范围是()(A)(B)(C)(D)7、在圆x+y=4上与直线4x+3y-12=0距离最小的点的坐标是()(A)(,)(B)(,-)(C)(-,)(D)(-,-)8、已知集合,集合,则等于()A、{2}B、{2,8}C、{4,10}D、{2,4,8,10}9、已知函数(1≤x≤3)是单调递增函数,则实数a的取值范围是()A、B、C、D、10、7、假设是第四象限角,则是()A、第二象限角B、第三象限角C、第一或第三象限角D、第二或第四象限角11、以下函数中,最小正周期为,且图象关于直线成轴对称图形的是()A、B、C、D、12、假设a,b是任意实数,且a>b,则()A、a2>b2B、C、lg(a—b)>0D、13、不等式组有解,则实数a的取值范围是()A、(—1,3)B、(—∞,—1)∪(3,+∞)C、(—3,1)D、(—∞,—3)∪(1,+∞)14、假设不等式对于任意实数x恒成立,则实数a的取值范围是()A、(—∞,3)B、C、(—∞,—3)D、15、函数y=sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-2x))+sin2x的最小正周期是()eq\f(π,2)B.πC.2πD.4π16、函数的图象()A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称17、如果等差数列中,,那么()(A)14(B)21(C)28(D)3518、数列{an}满足a1=1,a2=,且(n≥2),则an等于()。(A)(B)()n-1(C)()n(D)19、函数图像的对称轴方程可能是()A. B. C. D.20、圆心在轴上,半径为1,且过点(1,2)的圆的方程为()A. B.C.D.21、设,且,则()A.B.C.D.22、设,则等于() (A) (B)(C) (D)23、假设x为三角形中的最小内角,则函数y=sinx+cosx的值域是()A.(1, B.(0,C.[,] D.(, 24、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为()25、假设sinα>tanα>cotα(),则α∈()A.(,) B.(,0)C.(0,) D.(,)26、一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为()A.-24 B.84 C.72 D.3627、已知等差数列满足,则有()A、B、C、D、28、如果实数x,y满足等式(x-2)2+y2=3,那么的最大值是()A. B. C. D.29、已知{an}是等差数列,a1=-9,S3=S7,那么使其前n项和Sn最小的n是()A.4 B.5 C.6 D.730、计算机常用的十六进制是逢16进1的计数制,采用数字0—9和字母A—F共16个计数符号,这些符号与十进制的数的对应关系如下表:十六进制0123456789ABCDEF十进制0123456789101112131415例如:用十六进制表示E+D=1B,则A×B=()A.6E B.72 C.5F D.BO高考填空题解题技巧数学填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍、跨度大、知识覆盖面广、考察目标集中,形式灵活,答案简短、明确、具体,评分客观、公正、准确等。根据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求考生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。近几年出现了定性型的具有多重选择性的填空题。在解答填空题时,由于不反映过程,只要求结果,所以对正确性的要求比解答题更高、更严格,《考试说明》中对解答填空题提出的基本要求是“正确、合理、迅速”。为此在解填空题时要做到:快——运算要快,力戒小题大作;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。(一)数学填空题的解题方法1、直接法:直接从题设条件出发,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得到结论的,称为直接法。它是解填空题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,自觉地、有意识地采取灵活、简捷的解法。例1、乒乓球队的10名队员中有3名主力队员,派5名参加比赛。3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种(用数字作答)。例2、的展开式中的系数为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南公园停车场施工方案
- 2025煤矿监控维保合同
- 2024年知识产权合同保护与执行细则
- 2024版协议管理与法律实务培训协议版B版
- 威海钢质净化门施工方案
- 油罐旧浮盘拆除施工方案
- 汽修店名片发放方案
- 2024年降水施工操作合规协议模板版B版
- 2025年钢材订货合同模板
- 酒店管理保函管理准则
- 水泥行业数字化转型服务方案
- 深圳市南山区2024-2025学年第一学期期末教学质量检测九年级物理 24-25上九年级物理
- 应急设施设备和物资储备管理制度(4篇)
- 团委书记个人工作总结
- 高危多发性骨髓瘤诊断与治疗中国专家共识(2024年版)解读
- 英语语法与长难句理解知到智慧树章节测试课后答案2024年秋山东石油化工学院
- 2025年新高考语文古诗文理解性默写(含新高考60篇)
- 中医内科学虚劳培训课件
- DB31-T 1477-2024 空间地理数据归集技术要求
- 期末测试题(含答案)2024-2025学年译林版七年级英语上册
- 二零二四年度物业管理合同标的的管理内容和质量要求
评论
0/150
提交评论