版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE1.学习目标核心素养1.了解“斜二测画法”的概念并驾驭斜二测画法的步骤.(重点)2.会用斜二测画法画出一些简洁平面图形和立体图形的直观图.(难点)3.强化三视图、直观图、原空间几何体形态之间的相互转换.(易错、易混点)通过学习空间几何体直观图的画法,培育直观想象、逻辑推理、数学运算的数学核心素养.1.斜二测画法我们常用斜二测画法画空间图形及水平放置的平面多边形的直观图.斜二测画法是一种特别的平行投影画法.2.平面图形直观图的画法及要求思索:相等的角在直观图中还相等吗?[提示]不肯定.例如正方形的直观图为平行四边形.3.空间几何体直观图的画法(1)与平面图形的直观图画法相比多了一个z轴,直观图中与之对应的是z′轴;(2)平面x′O′y′表示水平平面,平面y′O′z′和x′O′z′表示竖直平面;(3)已知图形中平行于z轴(或在z轴上)的线段,在其直观图中平行性和长度都不变.(4)成图:去掉协助线,将被遮挡的部分改为虚线.思索:空间几何体的直观图唯一吗?[提示]不唯一.作直观图时,由于选轴的不同,画出的直观图也不同.1.长方形的直观图可能为下图中的哪一个()A.①② B.①②③C.②⑤ D.③④⑤C[由斜二测画法知,平行线依旧平行,但是直角不再是直角,所以②⑤正确.]2.梯形的直观图是()A.梯形 B.矩形C.三角形 D.随意四边形A[斜二测画法中平行性保持不变,故梯形的直观图仍是梯形.]3.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的长度为________.eq\f(5,2)[依据斜二测画法可知,△ABC为直角三角形,且AC=3,BC=2B′C′=4.∴AB=eq\r(32+42)=5.故AB边上的中线的长度为eq\f(5,2).]平面图形的直观图【例1】(1)如图所示,一个水平放置的正方形ABCD,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图A′B′C′D′中,顶点B′到x′轴的距离为________.eq\f(\r(2),2)[正方形的直观图A′B′C′D′如图:因为O′A′=B′C′=1,∠B′C′x′=45°,所以顶点B′到x′轴的距离为1×sin45°=eq\f(\r(2),2).](2)用斜二测画法画出图中五边形ABCDE的直观图.[解]画法:①在下图①中作AG⊥x轴于G,作DH⊥x轴于H.②在图②中画相应的x′轴与y′轴,两轴相交于点O′,使∠x′O′y′=45°.③在图②中的x′轴上取O′B′=OB,O′G′=OG,O′C′=OC,O′H′=OH,y′轴上取O′E′=eq\f(1,2)OE,分别过G′和H′作y′轴的平行线,并在相应的平行线上取G′A′=eq\f(1,2)GA,H′D′=eq\f(1,2)HD;④连接A′B′,A′E′,E′D′,D′C′,并擦去协助线G′A′,H′D′,x′轴与y′轴,便得到水平放置的正五边形ABCDE的直观图A′B′C′D′E′(如图③).①②③画平面图形的直观图的技巧:(1)在画水平放置的平面图形的直观图时,选取恰当的坐标系是关键,一般要使得平面多边形尽可能多的顶点在坐标轴上,以便于画点.(2)画平面图形的直观图,首先画与坐标轴平行的线段(平行性不变),与坐标轴不平行的线段通过与坐标轴平行的线段确定它的两个端点,然后连接成线段.eq\a\vs4\al([跟进训练])1.画水平放置的直角梯形的直观图,如图所示.[解](1)在已知的直角梯形OBCD中,以底边OB所在直线为x轴,垂直于OB的腰OD所在直线为y轴建立平面直角坐标系.画相应的x′轴和y′轴,使∠x′O′y′=45°,如图①②所示.(2)在x′轴上截取O′B′=OB,在y′轴上截取O′D′=eq\f(1,2)OD,过点D′作x′轴的平行线l,在l上沿x′轴正方向取点C′使得D′C′=DC.连接B′C′,如图②.(3)擦去协助线,所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.画空间几何体的直观图【例2】已知某几何体的三视图如图,请画出它的直观图(单位:cm).[解]画法:(1)如图①,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)以O为中点,在x轴上取线段OB=8cm,在y轴上取线段OA′=2cm,以OB和OA′为邻边作平行四边形OBB′(3)在z轴上取线段OC=4cm,过C分别作x轴、y轴的平行线,并在平行线上分别截取CD=4cm,CC′=2cm.以CD和CC′为邻边作平行四边形CDD(4)成图.连接A′C′,BD,B′D′,并加以整理(去掉协助线,将被遮挡的部分改为虚线),就得到该几何体的直观图(如图②).画空间几何体时,首先依据斜二测画法规则画出几何体的底面直观图,然后依据平行于z轴的线段在直观图中长度保持不变,画出几何体的各侧面,所以画空间多面体的步骤可简洁总结为:eq\x(画轴)→eq\x(画底面)→eq\x(画侧棱)→eq\x(成图)eq\a\vs4\al([跟进训练])2.用斜二测画法画长、宽、高分别为4cm,3cm,2cm的长方体ABCDA′B′C′D′[解]画法:(1)画轴.如图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画底面.以点O为中点,在x轴上取线段MN,使MN=4cm;在y轴上取线段PQ,使PQ=eq\f(3,2)cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.(3)画侧棱.过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别截取2cm长的线段AA′,BB′,CC′,DD′(4)成图.顺次连接A′,B′,C′,D′,并加以整理(去掉协助线,将被遮挡的部分改为虚线),就得到长方体的直观图.直观图的还原与计算[探究问题]1.如图,△A′B′C′是水平放置的△ABC斜二测画法的直观图,能否推断△ABC的形态?[提示]依据斜二测画法规则知:∠ACB=90°,故△ABC为直角三角形.2.若探究1中△A′B′C′的A′C′=6,B′C′=4,则AB边的实际长度是多少?[提示]由已知得△ABC中,AC=6,BC=8,故AB=eq\r(AC2+BC2)=10.3.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是哪个?[提示]由直观图可知△ABC是以∠B为直角的直角三角形,所以斜边AC最长.【例3】(1)如图①,Rt△O′A′B′是一个平面图形的直观图,若O′B′=eq\r(2),则这个平面图形的面积是()A.1B.eq\r(2)C.2eq\r(2)D.4eq\r(2)①②(2)如图②所示,梯形A1B1C1D1是一平面图形ABCD的直观图.若A1D1∥O′y′,A1B1∥C1D1,A1B1=eq\f(2,3)C1D1=2,A1D1=O′D1=1.试画出原四边形,并求原图形的面积.思路探究:逆用斜二测画法,还原图形.先定点,再连线得原图形,求面积.(1)C[由题图知,△OAB为直角三角形.∵O′B′=eq\r(2),∴A′B′=eq\r(2),O′A′=2.∴在原△OAB中,OB=eq\r(2),OA=4,∴S△OAB=eq\f(1,2)×eq\r(2)×4=2eq\r(2).选C.](2)解:如图,建立直角坐标系xOy,在x轴上截取OD=O′D1=1;OC=O′C1=2.在过点D与y轴平行的直线上截取DA=2D1A1在过点A与x轴平行的直线上截取AB=A1B1=2.连接BC,便得到了原图形(如图).由作法可知,原四边形ABCD是直角梯形,上、下底长度分别为AB=2,CD=3,直角腰长度为AD=2.所以面积为S=eq\f(2+3,2)×2=5.1.本例(2)中的条件改为如图所示的直角梯形,∠ABC=45°,AB=AD=1,DC⊥BC,求原图形的面积.[解]如图①,在直观图中,过点A作AE⊥BC,垂足为点E,则在Rt△ABE中,AB=1,∠ABE=45°,所以BE=eq\f(\r(2),2).而四边形AECD为矩形,AD=1,所以EC=AD=1.所以BC=BE+EC=eq\f(\r(2),2)+1.由此可还原原图形如图②,是一个直角梯形.①②在原图形中,A′D′=1,A′B′=2,B′C′=eq\f(\r(2),2)+1,且A′D′∥B′C′,A′B′⊥B′C′,所以原图形的面积为S=eq\f(1,2)(A′D′+B′C′)·A′B′=eq\f(1,2)×eq\b\lc\(\rc\)(\a\vs4\al\co1(1+1+\f(\r(2),2)))×2=2+eq\f(\r(2),2).2.本例(1)若改为“已知△ABC是边长为a的正三角形,求其直观图△A′B′C′的面积”,应如何求?[解]由斜二测画法规则可知,直观图△A′B′C′一底边上的高为eq\f(\r(3),2)a×eq\f(1,2)×eq\f(\r(2),2)=eq\f(\r(6),8)a,所以S△A′B′C′=eq\f(1,2)×a×eq\f(\r(6),8)a=eq\f(\r(6),16)a2.3.本例(1)中直观图中△O′A′B′的面积与原图形面积之比是多少?[解]由(1)中直观图可得S△O′A′B′=eq\f(1,2)×eq\r(2)×eq\r(2)=1,原图形面积为S△OAB=2eq\r(2).所以eq\f(S△O′A′B′,S△OAB)=eq\f(1,2\r(2))=eq\f(\r(2),4).1.直观图的还原技巧由直观图还原为平面图的关键是找与x′轴、y′轴平行的直线或线段,且平行于x′轴的线段还原时长度不变,平行于y′轴的线段还原时放大为直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.2.直观图与原图形面积之间的关系若一个平面多边形的面积为S,其直观图的面积为S′,则有S′=eq\f(\r(2),4)S或S=2eq\r(2)S′.利用这一公式可由原图形面积求其直观图面积或由直观图面积求原图形面积.1.斜二测画法是联系直观图和原图形的桥梁,可依据它们之间的可逆关系找寻它们的联系;在求直观图的面积时,可依据斜二测画法,画出直观图,从而确定其高和底边等,而求原图形的面积可把直观图还原为原图形.2.在用斜二测画法画直观图时,平行线段仍旧平行,所画平行线段之比仍旧等于它的真实长度之比,但所画夹角大小不肯定是其真实夹角大小.3.平面多边形与其直观图面积的关系一个平面多边形的面积为S原,斜二测画法得到的直观图的面积为S直.则S直=eq\f(\r(2),4)S原(S原=2eq\r(2)S直).1.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法错误的是()A.原来相交的仍相交 B.原来垂直的仍垂直C.原来平行的仍平行 D.原来共点的仍共点B[由斜二测画法规则知,B选项错误.故选B.]2.利用斜二测画法画出边长为3cm的正方形的直观图,ABCDC[正方形的直观图应是一个内角为45°的平行四边形,且相邻的两边之比为2∶1,故选C.]3.如图,平行四边形O′P′Q′R′是四边形OPQR的直观图,若O′P′=3,O′R′=1,则原四边形OPQR的周长为________.10[由直观图可知,原图形是矩形OPQR,且OP=3,OR=2.故原四边形OPQR的周长为10.]4.画出水平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆人文科技学院《员工培训与开发实务》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《基础教育课程改革》2022-2023学年第一学期期末试卷
- 重庆人文科技学院《儿科护理学》2021-2022学年第一学期期末试卷
- 2021年修订版《中华人民共和国安全生产法》考试题库(真题导出版)
- 重庆人文科技学院《人体工程学》2021-2022学年第一学期期末试卷
- 重庆财经学院《市场调查与预测》2021-2022学年第一学期期末试卷
- 重庆财经学院《软件系统开发实践》2022-2023学年期末试卷
- 重庆财经学院《美学基础》2022-2023学年第一学期期末试卷
- 重庆财经学院《新媒体文案》2022-2023学年第一学期期末试卷
- 茶叶中提取咖啡课程设计
- 2024-2030年中国骆驼奶行业市场发展趋势与前景展望战略分析报告
- 专职会计劳务合同模板
- 中学生廉洁教育课件
- 智慧城市会展融合
- DB50-T 771-2017 地下管线探测技术规范
- 2024年全国普法知识考试题库与答案
- 教学计划(教案)-2024-2025学年人教版(2024)美术一年级上册
- 2024年全国职业院校技能大赛中职组(婴幼儿保育赛项)考试题库-下(多选、判断题)
- 机械工程导论-基于智能制造(第2版)第3章 机械设计与现代设计方法
- 2024年新高考Ⅰ卷、Ⅱ卷、甲卷诗歌鉴赏试题讲评课件
- 任务二:诗歌朗诵教案 人教版
评论
0/150
提交评论