人教A版(新教材)高中数学选择性必修第三册学案:§8 1 成对数据的统计相关性_第1页
人教A版(新教材)高中数学选择性必修第三册学案:§8 1 成对数据的统计相关性_第2页
人教A版(新教材)高中数学选择性必修第三册学案:§8 1 成对数据的统计相关性_第3页
人教A版(新教材)高中数学选择性必修第三册学案:§8 1 成对数据的统计相关性_第4页
人教A版(新教材)高中数学选择性必修第三册学案:§8 1 成对数据的统计相关性_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教A版(新教材)高中数学选择性必修第三册PAGEPAGE1§8.1成对数据的统计相关性学习目标1.结合实例,了解样本相关系数的统计含义.2.了解样本相关系数与标准化数据向量夹角的关系.3.结合实例,会通过样本相关系数比较多组成对样本数据的相关性.知识点一相关关系1.相关关系的定义:两个变量有关系,但没有确切到可由其中一个去精确地决定另一个的程度,这种关系称为相关关系.思考相关关系是函数关系吗?〖答案〗不是.函数关系是唯一确定的关系.2.相关关系的分类(1)按变量间的增减性分为正相关和负相关.①正相关:当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势;②负相关:当一个变量的值增加时,另一个变量的相应值呈现减少的趋势.(2)按变量间是否有线性特征分为线性相关和非线性相关(曲线相关).①线性相关:如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,我们称这两个变量线性相关;②非线性相关或曲线相关:如果两个变量具有相关性,但不是线性相关,我们称这两个变量非线性相关或曲线相关.知识点二相关关系的刻画1.散点图:为了直观描述成对样本数据的变化特征,把每对成对样本数据都用直角坐标系中的点表示出来,由这些点组成的统计图,叫做散点图.2.样本相关系数(1)我们常用样本相关系数r来确切地反映成对样本数据(xi,yi)的相关程度,其中r=eq\f(\i\su(i=1,n,)xi-\x\to(x)yi-\x\to(y),\r(\i\su(i=1,n,)xi-\x\to(x)2)\r(\i\su(i=1,n,)yi-\x\to(y)2)).(2)样本相关系数r的取值范围为〖-1,1〗.①若r>0时,成对样本数据正相关;②若r<0时,成对样本数据负相关;③当|r|越接近1时,成对样本数据的线性相关程度越强;④当|r|越接近0时,成对样本数据的线性相关程度越弱.1.函数关系是一种确定关系,而相关关系是一种不确定关系.(√)2.样本相关系数r越大,两变量的相关性越强.(×)3.散点图可以直观地分析出两个变量是否具有相关性.(√)4.若变量x,y满足函数关系,则这两个变量线性相关.(×)一、变量间相关关系的判断例1(1)(多选)下列关系中,属于相关关系的是()A.正方形的边长与面积之间的关系B.农作物的产量与施肥量之间的关系C.出租车费与行驶的里程D.降雪量与交通事故的发生率之间的关系〖答案〗BD〖解析〗A中,正方形的边长与面积之间的关系是函数关系;B中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;C为确定的函数关系;D中,降雪量与交通事故的发生率之间具有相关关系.(2)某种产品的广告支出费x与销售额y之间有如下对应数据(单位:百万元):x24568y3040605070①画出散点图;②从散点图中判断销售金额与广告支出费成什么样的关系?解①以x对应的数据为横坐标,y对应的数据为纵坐标,所作的散点图如图所示.②从图中可以发现广告支出费与销售金额之间具有相关关系,并且当广告支出费由小变大时,销售金额也大多由小变大,图中的数据大致分布在某条直线的附近,即x与y成正相关关系.反思感悟两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.跟踪训练1(多选)在下列所示的四个图中,每个图的两个变量具有相关关系的图是()〖答案〗BC〖解析〗图A的两个变量具有函数关系;图BC的两个变量具有相关关系;图D的两个变量之间既不是函数关系,也不是相关关系.二、样本相关系数的性质例2(1)甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性做试验,并用回归分析方法分别求得样本相关系数r如下表:甲乙丙丁r0.820.780.690.85则哪位同学的试验结果体现A,B两变量有更强的线性相关性()A.甲B.乙C.丙D.丁〖答案〗D〖解析〗|r|越接近1,相关性越强,故选D.(2)在一组成对样本数据为(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若这组成对样本数据的样本相关系数为-1,则所有的样本点(xi,yi)(i=1,2,…,n)满足的方程可以是()A.y=-eq\f(1,2)x+1 B.y=x-1C.y=x+1 D.y=-x2〖答案〗A〖解析〗∵这组成对样本数据的样本相关系数为-1,∴这一组成对样本数据(x1,y1),(x2,y2),…,(xn,yn)线性相关,且是负相关.∴可排除B,C,D,故选A.反思感悟样本相关系数的性质(1)r的绝对值越接近0,相关性越弱.(2)r的绝对值越接近1,相关性越强.跟踪训练2(1)对变量x,y有成对样本数据(xi,yi)(i=1,2,…,10),得散点图图1;对变量u,v有成对样本数据(ui,vi)(i=1,2,…,10),得散点图图2.由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关〖答案〗C〖解析〗由这两个散点图可以判断,变量x与y负相关,u与v正相关.(2)(多选)对两个变量的样本相关系数r,下列说法正确的是()A.|r|越大,相关程度越大B.|r|越小,相关程度越大C.|r|趋近于0时,没有线性相关关系D.|r|越接近1时,线性相关程度越强〖答案〗AD〖解析〗对于A,|r|越大,相关程度越大,A正确;对于B,|r|越小,相关程度越小,B错误;对于C,|r|趋近于0时,线性相关关系越弱,C错误;对于D,|r|越接近1时,线性相关程度越强,D正确.综上,正确的是AD.三、样本相关系数的计算及应用例3某厂的生产原料耗费x(单位:百万元)与销售额y(单位:百万元)之间有如下的对应关系:x2468y30405070(1)画出(x,y)的散点图;(2)计算x与y之间的样本相关系数,并刻画它们的相关程度.解(1)画出(x,y)的散点图如图所示.(2)eq\x\to(x)=5,eq\x\to(y)=47.5,eq\i\su(i=1,4,x)eq\o\al(2,i)=120,eq\i\su(i=1,4,y)eq\o\al(2,i)=9900,eq\i\su(i=1,4,x)iyi=1080,故样本相关系数r=eq\f(\i\su(i=1,4,x)iyi-4\x\to(x)\x\to(y),\r(\i\su(i=1,4,x)\o\al(2,i)-4\x\to(x)2\i\su(i=1,4,y)\o\al(2,i)-4\x\to(y)2))=eq\f(1080-4×5×47.5,\r(120-4×529900-4×47.52))≈0.9827.由样本相关系数r≈0.9827,可以推断生产原料耗费与销售额这两个变量正线性相关,且相关程度很高.反思感悟线性相关强弱的判断方法(1)散点图:散点图只是粗略作出判断,其图象越接近直线,相关性越强.(2)样本相关系数:样本相关系数能够较准确的判断相关的程度,其绝对值越大,相关性越强.跟踪训练3假设关于某种设备的使用年限x(单位:年)与所支出的维修费用y(单位:万元)有如下统计资料:x23456y2.23.85.56.57.0计算y与x之间的样本相关系数(精确到0.001,已知eq\i\su(i=1,5,x)eq\o\al(2,i)=90,eq\i\su(i=1,5,y)eq\o\al(2,i)≈140.8,eq\i\su(i=1,5,x)iyi=112.3,eq\r(79)≈8.9,eq\r(2)≈1.4).解∵eq\x\to(x)=eq\f(2+3+4+5+6,5)=4,eq\x\to(y)=eq\f(2.2+3.8+5.5+6.5+7.0,5)=5.eq\i\su(i=1,5,x)iyi-5eq\x\to(x)eq\x\to(y)=112.3-5×4×5=12.3,eq\i\su(i=1,5,x)eq\o\al(2,i)-5eq\x\to(x)2=90-5×42=10,eq\i\su(i=1,5,y)eq\o\al(2,i)-5eq\x\to(y)2=140.8-125=15.8,∴r=eq\f(\i\su(i=1,5,x)iyi-5\x\to(x)\x\to(y),\r(\i\su(i=1,5,x)\o\al(2,i)-5\x\to(x)2\i\su(i=1,5,y)\o\al(2,i)-5\x\to(y)2))=eq\f(12.3,\r(10×15.8))=eq\f(12.3,\r(158))=eq\f(12.3,\r(2)×\r(79))≈eq\f(12.3,1.4×8.9)≈0.987.1.(多选)下列命题正确的是()A.任意两个变量都具有相关关系B.圆的周长与该圆的直径具有相关关系C.某商品的需求量与该商品的价格是一种非确定性关系D.当两个变量相关且样本相关系数r>0时,表明两个变量正相关〖答案〗CD〖解析〗A显然不对,B是函数关系,CD正确.2.若变量y与x之间的样本相关系数r=-0.9832,则变量y与x之间()A.不具有线性相关关系B.具有线性相关关系C.它们的线性相关关系还需要进一步确定D.不确定〖答案〗B〖解析〗变量y与x之间的样本相关系数r=-0.9832,|r|=0.9832接近1,样本相关系数的绝对值越大,相关性越强,∴变量y与x之间有较强的线性相关关系,故选B.3.两个变量x,y的样本相关系数r1=0.7859,两个变量u,v的样本相关系数r2=-0.9568,则下列判断正确的是()A.变量x与y正相关,变量u与v负相关,变量x与y的线性相关性较强B.变量x与y负相关,变量u与v正相关,变量x与y的线性相关性较强C.变量x与y正相关,变量u与v负相关,变量u与v的线性相关性较强D.变量x与y负相关,变量u与v正相关,变量u与v的线性相关性较强〖答案〗C〖解析〗由样本相关系数r1=0.7859>0知x与y正相关,由样本相关系数r2=-0.9568<0知u,v负相关,又|r1|<|r2|,∴变量u与v的线性相关性比x与y的线性相关性强.故选C.4.据两个变量x,y之间的成对样本数据画出散点图如图,这两个变量是否具有线性相关关系________.(填“是”或“否”)〖答案〗否〖解析〗图中的点分布杂乱,两个变量不具有线性相关关系.5.部门所属的10个工业企业生产性固定资产价值与工业增加值资料如下表(单位:百万元):固定资产价值33566789910工业增加值15172528303637424045根据上表资料计算的样本相关系数约为________.〖答案〗0.9918〖解析〗eq\x\to(x)=eq\f(3+3+5+6+6+7+8+9+9+10,10)=6.6,eq\x\to(y)=eq\f(15+17+25+28+30+3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论