版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题12.11三角形全等几何模型(一线三等角)第一部分【知识点归纳】【知识点一】一线三直角模型1.基本图形题型特征:如图1,在直线BC上出现三个直角,如图中∠B=∠ACE=∠D=90°图1图2图3解题方法:只要题目再出现一组等边(AB=CD或BC=DE或CA=CE),可证△ABE≌△ECD(AAS或ASA)结论延伸1:如图2,两个直角三角形在直线两侧时,同样成立结论延伸2:图1中连接AE,得到如图3,可得以下结论:四边形ABDE为直角梯形;AB+DE=BC(上底+下底=高)【知识点二】一线三等角模型图4图5题型特征:如图4,图形的某条线段上出现三个相等的角,如图中∠B=∠ACE=∠D解题方法:只要题目再出现一组等边(BA=CD或BC=DA或CA=DC),必证△ABC≌△CDE(AAS或ASA)结论延伸:如图5,两个三角形在直线两侧时,同样成立第二部分【题型展示与方法点拨】【题型1】直接用“一线三直角”模型求值或证明【例1】(23-24八年级上·安徽合肥·期末)如图,在中,,,直线经过点,且,,垂足分别为.(1)求证:;(2)若,,求四边形的面积.【变式1】(23-24八年级上·湖北武汉·阶段练习)如图,小虎用块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(,),点C在上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离的长度为()A. B. C. D.【变式2】(23-24九年级下·重庆开州·阶段练习)如图,在中,,,点为上一点,连接.过点作于点,过点作交的延长线于点.若,,则的长度为.【题型2】直接用“一线三等角”模型求值或证明【例2】(23-24八年级上·新疆昌吉·期中)已知是直角三角形,,直线l经过点A,分别过点B、C向直线l作垂线,垂足分别为D、E
(1)如图a,当点B、C位于直线l的同侧时,证明:(2)如图b,锐角中,,直线l经过点A,点D、E分别在直线l上,点B,C位于l的同一侧,如果,请找到图中的全等三角形,并写出线段和之间的数量关系【变式1】(21-22八年级上·浙江温州·期中)如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于()A.3 B.2 C. D.【变式2】(23-24七年级下·吉林长春·期中)如图,在中,,,点D在边上,且,点E、F在线段上.,的面积为18,则与的面积之和.【题型3】构造“一线三直角”模型求值或证明【例3】(23-24八年级上·山西吕梁·期末)数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系问题情境:如图1,三角形纸片中,,.将点C放在直线上,点A,B位于直线的同侧,过点A作于点D初步探究:(1)在图1的直线上取点E,使,得到图2,猜想线段与的数量关系,并说明理由;(2)小颖又拿了一张三角形纸片继续进行拼图操作,其中,.小颖在图1的基础上,将三角形纸片的顶点P放在直线上,点M与点B重合,过点N作于点H.如图3,探究线段,,之间的数量关系,并说明理由【变式1】(23-24八年级上·新疆喀什·期中)如图,则的面积为()A.9 B.6 C. D.【变式2】(20-21七年级下·黑龙江哈尔滨·期末)如图,在中,,过点作,且,连接,若,则的长为.【题型4】“一线三直(等)角”模型的延伸与拓展【例4】如图,A点的坐标为(0,3),B点的坐标为(-3.0),D为x轴上的一个动点,AE⊥AD,且AE=AD,连接BE交y轴于点M(1)若D点的坐标为(-5.0),求E点的坐标:(2)求证:M为BE的中点(3)当D点在x轴上运动时,探索:为定值【变式1】(23-24八年级上·陕西西安·阶段练习)勾股定理被誉为“几何明珠”.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图所示,把一个边长分别为3,4,5的三角形和三个正方形放置在大长方形中,则该长方形中空白部分的面积为()A.54 B.60 C.100 D.110【变式2】已知:四边形ABCD中,AB=AD=CD,∠BAD=90°,三角形ABC的面积为1,则线段AC的长度是.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2021·四川南充·中考真题)如图,,AD是内部一条射线,若,于点E,于点F.求证:.【例2】(2023·重庆·中考真题)如图,在中,,,点D为上一点,连接.过点B作于点E,过点C作交的延长线于点F.若,,则的长度为.
2、拓展延伸【例1】(22-23八年级下·河南洛阳·期中)综合与实践数学活动课上,老师让同学们以“过等腰三角形顶点的直线”为主题开展数学探究.(1)操作发现:如图甲,在中,,且,直线l经过点A.小华分别过B、C两点作直线l的垂线,垂足分别为点D、E.易证,此时,线段、、的数量关系为:;(2)拓展应用:如图乙,为等腰直角三角形,,已知点C的坐标为,点B的坐标为.请利用小华的发现直接写出点A的坐标:;(3)迁移探究:①如图丙,小华又作了一个等腰,,且,她在直线l上取两点D、E,使得,请你帮助小华判断(1)中线段、、的数量关系是否变化,若不变,请证明;若变化,写出它们的关系式并说明理由;②如图丁,中,,,点D、E在直线上,且,请直接写出线段、、的数量关系.【例2】(22-23八年级上·广东惠州·期中)如图1,,垂足分别为D,E.(1)若,求的长.(2)在其它条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国通号研究设计院集团春季校园招聘高频重点提升(共500题)附带答案详解
- 2025中国移动浙江公司春季校园招聘625人高频重点提升(共500题)附带答案详解
- 2025中国石油昆仑能源限公司秋季校招170人高频重点提升(共500题)附带答案详解
- 2025中国电信河北公司校园招聘147人高频重点提升(共500题)附带答案详解
- 2025中国烟草总公司合肥设计院校园招聘2人高频重点提升(共500题)附带答案详解
- 2025中国市政工程中南设计研究总院限公司春季校园招聘50人高频重点提升(共500题)附带答案详解
- 2025下半年辽宁省质量技术监督局所属事业单位招聘历年高频重点提升(共500题)附带答案详解
- 2025下半年江苏省镇江市事业单位招聘68人历年高频重点提升(共500题)附带答案详解
- 2025下半年广东省清远佛冈县招聘事业单位人员信息(243人)高频重点提升(共500题)附带答案详解
- 2025下半年四川剑阁县城乡规划建设和住房保障局所属事业单位招考高频重点提升(共500题)附带答案详解
- 养老护理员培训课件
- 包装-存储-运输管理制度
- 装修增项补充合同协议书
- 模拟电路设计智慧树知到期末考试答案章节答案2024年广东工业大学
- 行政复议法-形考作业2-国开(ZJ)-参考资料
- 2022-2023学年广东省广州市番禺区教科版(广州)六年级上册期末测试英语试卷【含答案】
- 中国传统文化专题选讲智慧树知到期末考试答案2024年
- MOOC 通信原理-南京邮电大学 中国大学慕课答案
- 原发性肝癌诊疗规范
- 专题01 直线与椭圆的位置关系(原卷版)
- 2024年宁波永耀供电服务有限公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论