版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教A版(新教材)高中数学选择性必修第三册PAGEPAGE1第六章计数原理〖数学文化〗——了解数学文化的发展与应用排列组合发展史杨辉数数始于结绳计数的远古时代,那时人的智力的发展尚处于低级阶段,谈不上有什么技巧.随着人们对于数的了解和研究,在形成与数密切相关的数学分支的过程中,如数论、代数、函数论以至泛函的形成与发展,逐步地从数的多样性发现数数的多样性,产生了各种数数的技巧.中国古代的《易经》中用十个天干和十二个地支以六十为周期来记载月和年,以及在洛书河图中关于幻方的记载,是人们至今所了解的最早发现的组合问题.于11和12世纪间,贾宪就发现了二项式系数,杨辉将它整理记载在他的《续古抉奇法》一书中,这就是中国通常称的杨辉三角.事实上,于12世纪印度的婆什迦罗第二也发现了这种组合数.13世纪波斯的哲学家曾讲授过此类三角.而在西方,布莱士·帕斯卡发现这个三角形是在17世纪中期.〖读图探新〗——发现现象背后的知识1.想着家里热腾腾的饺子,盼着过年那张望眼欲穿的车票,一个信念:有钱没钱回家过年!已知有一条动车线,在甲、乙两城之间来往,中途停靠4处,连头带尾,共有6个停靠站.2.2019年10月1日我军首次组建领导指挥方队接受检阅,350余名受阅队员全部从解放军全新作战指挥链中抽组,25名将军组成将军排面……这是我军首次组建领导指挥方队接受检阅.3.接力赛是田径运动中一项很常见的赛制,每年的学校运动会中都会有,这是一个最能代表团体合作精神的项目.要想在这个项目中取得好的成绩,就必须对参加接力赛的队员进行科学的排兵布阵.问题1:为这6个停靠站,要准备多少种不同的车票呢?问题2:25名将军站在排面,有多少种排列的方法?问题3:4×100米接力赛中,对参赛的四名运动员共有多少种安排的方法?链接:以上问题均为计数问题,计数问题是数学的重要研究对象之一,其相关内容是进一步学习概率的基础.学习时应重视两个计数原理的学习,分清问题的解决是要分类还是分步;对问题涉及的是排列问题、组合问题,还是排列与组合的综合问题,要认真辨析,抓住联系,弄清区别.6.1分类加法计数原理与分步乘法计数原理第一课时两个计数原理及其简单应用课标要求素养要求1.通过实例,了解分类加法计数原理、分步乘法计数原理及其意义.2.理解分类加法计数原理与分步乘法计数原理.通过两个计数原理的学习,提升数学抽象及逻辑推理素养.自主梳理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.1.分类加法计数原理的最重要特点是各类中的每种方法都可以单独完成这件事;正确运用分类加法计数原理的关键是明确分类的标准并做到不重不漏.2.当解决一个问题要分成若干步,每一步只能完成这件事的一部分,且只有当所有步都完成后,这件事才完成,这时就采用分步乘法计数原理.自主检验1.思考辨析,判断正误(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)〖提示〗在分类加法计数原理中,两类不同的方案中,每一种方法都不相同.(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.(√)(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)(4)在分步乘法计数原理中,事情若是分两步完成的,那么其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成.(√)2.从3名女同学和2名男同学中选出一人主持本班一次班会,则不同的选法种数为()A.6 B.5C.3 D.2〖答案〗B〖解析〗由分类加法计数原理知,共有3+2=5(种)不同的选法.3.现有3名老师、8名男生和5名女生共16人.若需1名老师和1名学生参加评选会议,则不同的选法种数为()A.39 B.24C.15 D.16〖答案〗A〖解析〗先从3名老师中任选1名,有3种选法,再从13名学生中任选1名,有13种选法.由分步乘法计数原理知,不同的选法种数为3×13=39.4.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两个袋子里各取一个球,共有__________种不同的取法.〖答案〗48〖解析〗由分步乘法计数原理知,共有6×8=48(种)不同的取法.题型一分类加法计数原理的应用〖例1〗在所有的两位数中,个位数字大于十位数字的两位数的个数为__________.〖答案〗36〖解析〗法一根据题意,将十位上的数字按1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个).法二分析个位数字,可分以下几类:个位数字是9,则十位数字可以是1,2,3,…,8中的一个,故共有8个;个位数字是8,则十位数字可以是1,2,3,…,7中的一个,故共有7个;同理,个位数字是7的有6个;……个位数字是2的有1个.由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个).〖迁移1〗(变条件)若本例条件变为个位数字小于十位数字且为偶数,那么这样的两位数有多少个?解当个位数字是8时,十位数字取9,只有1个;当个位数字是6时,十位数字可取7,8,9,共3个;当个位数字是4时,十位数字可取5,6,7,8,9,共5个;同理可知,当个位数字是2时,共7个;当个位数字是0时,共9个.由分类加法计数原理知,符合条件的两位数共有1+3+5+7+9=25(个).〖迁移2〗(变条件,变设问)用1,2,3这3个数字可以写出没有重复数字的整数__________个.〖答案〗15〖解析〗分三类:第一类为一位整数,有3个;第二类为两位整数,有12,21,23,32,13,31,共6个;第三类为三位整数,有123,132,231,213,321,312,共6个,∴由分类加法计数原理知共可写出没有重复数字的整数3+6+6=15(个).思维升华利用分类加法计数原理计数时的解题流程〖训练1〗满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13C.12 D.10〖答案〗B〖解析〗由关于x的方程ax2+2x+b=0有实数解,得a=0,b∈R或a≠0时,ab≤1.又a,b∈{-1,0,1,2},故若a=-1时,b=-1,0,1,2,有4种可能;若a=0时,b=-1,0,1,2,有4种可能;若a=1时,b=-1,0,1,有3种可能;若a=2时,b=-1,0,有2种可能.∴由分类加法计数原理知共有(a,b)的个数为4+4+3+2=13.题型二分步乘法计数原理〖例2〗在平面直角坐标系内,若点P(x,y)的横、纵坐标均在{0,1,2,3}内取值,则可以组成多少个不同的点P?解确定点P的坐标必须分两步,即分步确定点P的横坐标与纵坐标.第一步,确定横坐标,从0,1,2,3四个数字中选一个,有4种方法;第二步,确定纵坐标,从0,1,2,3四个数字中选一个,也有4种方法.根据分步乘法计数原理,所有不同的点P的个数为4×4=16.故可以组成16个不同的点P.思维升华应用分步乘法计数原理应注意如下问题:(1)明确题目中所指的“完成一件事”是什么事,单独用题目中所给的某种方法是不是能完成这件事,也就是说要经过几步才能完成这件事.(2)完成这件事要分若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步,这件事都不可能完成,即各步之间是关联的,相互依存的,只有前步完成后步才能进行.(3)根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,缺少任何一步也不能完成这件事,即分步要做到步骤完整.〖训练2〗用0,1,2,3,4,5,6这七个数字共能组成多少个两位数?解第一步,确定十位数字,1,2,3,4,5,6六个数字都可以选择,有6种方法;第二步,确定个位数字,0,1,2,3,4,5,6七个数字都可以选择,有7种选法.根据分步乘法计数原理,不同的两位数共有6×7=42(个).故可以组成42个两位数.题型三两个计数原理的简单应用〖例3〗现有高一年级的四个班的学生34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?解(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步:第一、二、三、四步分别为从一、二、三、四班学生中选一人任组长.所以,共有不同的选法N=7×8×9×10=5040(种).(3)分六类,每类又分两步:从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以,共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).思维升华(1)在处理具体的应用题时,首先必须弄清是“分类”还是“分步”,其次要搞清“分类”或“分步”的具体标准是什么,选择合理的标准处理事件,关键是看能否独立完成这件事,避免计数的重复或遗漏.(2)对于一些比较复杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题更加直观、清晰.〖训练3〗某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人到边远地区支教,有多少种不同的选法?解由题意,知有1人既会英语又会日语,6人只会英语,2人只会日语.法一分两类.第一类:从只会英语的6人中选1人教英语,有6种选法,则教日语的有2+1=3(种)选法.此时共有6×3=18(种)选法.第二类:从不只会英语的1人中选1人教英语,有1种选法,则选教日语的有2种选法,此时有1×2=2(种)选法.所以由分类加法计算原理知,共有18+2=20(种)选法.法二设既会英语又会日语的人为甲,则甲有入选、不入选两类情形,入选后又要分两种:(1)教英语;(2)教日语.第一类:甲入选.(1)甲教英语,再从只会日语的2人中选1人,由分步乘法计数原理,有1×2=2(种)选法;(2)甲教日语,再从只会英语的6人中选1人,由分步乘法计数原理,有1×6=6(种)选法.故甲入选的不同选法共有2+6=8(种).第二类:甲不入选.可分两步.第一步,从只会英语的6人中选1人有6种选法:第二步,从只会
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论