版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版八年级下册第六章第四节第1课时多边形的内角和一.学生起点分析学生已学过三角形的内角和定理,以及三角形的边、顶点、内角等概念,并且已初步了解四边形可分成两个三角形来求内角和,这为本节课的学习打下了基础。因而学生在探索多边形内角和时,便会很容易想到“拼”和“量”和把多边形转化成三角形等方法,但是,学生对把多边形转化成三角形这种化归思想的理解和应用还存在一定的困难。尽管如此,由于在以往的学习中,学生的动手实践、自主探索及合作探究能力都得到了一定的训练,通过本节课的学习,这一方面的能力将会得到进一步的提高,学生将会轻松、愉快地完成本节课的学习任务。二.教学任务分析本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神.在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力.教学目标1.掌握多边形内角和定理,进一步了解转化的数学思想2.经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.3.让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.教学重难点【教学重点】多边形内角和定理的探索和应用【教学难点】多边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透.三.教学过程设计第一环节创设现实情境,提出问题,引入新课1.三角形是如何定义的?2.仿照三角形定义,你能学着给四边形、五边形……边形下定义吗?目的:对概念分析和归纳,培养学生的口头表达能力和语言组织能力。同时渗透类比思想。第二环节合作探究1.三角形的内角和是多少度?你是怎么得出的?①用量角器度量:分别测量出三角形三个内角的度数,再求和。②拼角:将三角形两个内角裁剪下来与第三个角拼在一起,可组成一个平角。目的:学生分组,利用度量和拼角的方法验证三角形的内角和,为四边形内角和的探索奠定基础。2.四边形的内角和是多少?用尽可能多的方法探究四边形的内角和①度量;②拼角;③将四边形转化成三角形求内角和。目的:学生先通过度量、拼角两种方法,猜想得出四边形的内角和是360°,然后引导学生利用分割的方法,将四边形分割成两个三角形来得到四边形的内角和,进一步渗透类比,转化的数学思想。3.在四边形内角和的探索过程中,用到了几种方法,你认为哪种方法好?请讲述你的理由。度量法:不精确;拼角法:操作不方便;当多边形边数较大时,度量法、拼角法都不可取。第三种方法:精确、省事且有理论根据。目的:通过几种方法的展示,比较几种方法的优劣,为五边形内角和的探索提供最简捷的方法。4.根据四边形的内角和的求法,你能否求出五边形的内角和呢?小结:纵观以上各种证明思路,其共同点是通过图形分割,把五边形问题转化为熟悉的三角形、四边形问题来解决。目的:由于四边形的内角和易求得,这里采用略讲,而着重研究求五边形的内角和。在课堂上应该留给学生充足的时间讨论、交流,寻求多种不同的分割方法来得出五边形的内角和。这既符合新课程教学理念,又符合学生的认知规律和年龄特征,同时渗透转化思想。5.小组合作,完成下面的表格。(课件出示讨论结果)6.从表格中你发现了什么规律?从边形的一个顶点可以引出(n-3)条对角线,把边形分成(n-2)个三角形。从而得出:边形的内角和是(n-2)·180°。目的:在数学学习中,培养学生善于总结规律,构建知识体系是培养数学能力的一项重要内容,这样不仅使学生把本节课所学的知识形成一个完整的知识体系,而且进一步理解了多边形的内角和公式中的(n-2)的来历,更有利于培养学生善于归纳、总结的数学习惯和能力。第三环节巩固训练1.如图6-24,四边形ABCD中,∠A+∠C=180°,∠B与∠D有怎样的关系?2.一个多边形的内角和为1440°,则它是几边形?3.一个多边形的边数增加1,则它的内角和将如何变化?结论:多边形每增加一条边,它的内角和增加180°目的:通过本组练习题的训练,既巩固了新知,又训练了学生思维的灵活性与开阔性。同时在分组交流的过程中,学生又感受到了合作的重要性,体验到了成功的快乐,增强了学生的自信心。第四环节拓展延伸1.想一想:观察图中的多边形,它们的边、角有什么特点?正多边形定义:在平面内,每个内角都、每条边也都的多边形叫做正多边形。2.练一练:①正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角分别是多少度?②正边形的内角是多少度?③一个正多边形的每个内角都是150°,求它的边数?目的:本组练习的设计,不仅巩固了多边形内角和公式的应用,还进一步理解了正多边形的定义第五环节知识小结1.过本节课的学习,你学到了哪些知识?有何体会?(多边形的有关概念、正多边形、多边形的内角和定理,并能利用公式进行计算)2.在学习多边形的有关概念时,我们是通过复习三角形的有关概念来类比得出的。在研究、探索多边形的内角和公式时,首先从具体的、特殊的四边形、五边形入手,来得出多边形的内角和公式。在研究问题的过程中,把多边形问题通过分割成三角形来研究,即把复杂问题转化为简单问题,这种研究和探索问题的方法都是我们在学习数学过程中,经常要用到的,希同学们要领悟这种思想方法。目的:鼓励学生畅所欲言,总结对本节课的收获和体会,自主建构知识体系,锻炼学生的口头表达能力,培养学生的自信心。第六环节作业布置作业:C.155页习题6.71,2.3题;B.探究五角星的五个角的度数之和;A.剪掉一张长方形纸片的一个角后,纸片还剩几个角?这个多边形的内角和是多少度?与同伴交流.目的:作业布置分A、B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年国家公务员考试行测真题卷行政执法答案和解析
- 乡村医生考试试题
- 高中生物必修一:200个易混易错判断题集锦
- 丰收之歌图文
- 小学语文教学设计案例 完整的小学语文教学设计案例
- 教育培训项目投资合同三篇
- 生物与艺术结合的跨界教学探索计划
- 组织结构对工作计划的影响
- 单位健康码红码应急预案
- 主管如何运用社交技能加强影响力计划
- 2024年入团积极分子结业考试试题
- 潮湿相关性皮炎的护理
- 餐饮服务质量提升
- 幼儿园园长的幼教教研与项目管理
- 健康评估练习题大全(含答案)
- 新北师大版小学数学二年级上册《六-测量:课桌有多长》-公开课教案-1
- 构建文明校园共同创造和谐学园
- 铁路边坡水害分析报告
- 南平出租车从业资格证模拟考试题
- 《怎样听课评课》课件
- 建筑施工工程投入的主要施工机械设备情况描述及进场计划
评论
0/150
提交评论