版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年新疆维吾尔自治区乌鲁木齐市新市区第七十中学高三年级第二学期期初考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺2.设i为虚数单位,若复数,则复数z等于()A. B. C. D.03.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元4.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()A. B. C. D.5.已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为()A. B. C. D.6.已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为()A. B. C. D.7.在各项均为正数的等比数列中,若,则()A. B.6 C.4 D.58.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.9.执行如图所示的程序框图,则输出的的值是()A.8 B.32 C.64 D.12810.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为()A. B. C. D.11.若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是()A.E B.F C.G D.H12.已知集合.为自然数集,则下列表示不正确的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.复数(其中i为虚数单位)的共轭复数为________.14.双曲线的左焦点为,点,点P为双曲线右支上的动点,且周长的最小值为8,则双曲线的实轴长为________,离心率为________.15.设是公差不为0的等差数列的前项和,且,则______.16.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,,满足,求的最小值.18.(12分)已知函数.(1)求函数的单调区间;(2)若,证明.19.(12分)设直线与抛物线交于两点,与椭圆交于两点,设直线(为坐标原点)的斜率分别为,若.(1)证明:直线过定点,并求出该定点的坐标;(2)是否存在常数,满足?并说明理由.20.(12分)如图,在直角中,,,,点在线段上.(1)若,求的长;(2)点是线段上一点,,且,求的值.21.(12分)已知函数(,),且对任意,都有.(Ⅰ)用含的表达式表示;(Ⅱ)若存在两个极值点,,且,求出的取值范围,并证明;(Ⅲ)在(Ⅱ)的条件下,判断零点的个数,并说明理由.22.(10分)选修4-5:不等式选讲设函数.(1)当时,求不等式的解集;(2)若在上恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:
沿上棱两端向底面作垂面,且使垂面与上棱垂直,
则将几何体分成两个四棱锥和1个直三棱柱,
则三棱柱的体积V1四棱锥的体积V2=13×1×3×2=2【点睛】本题考查三视图及几何体体积的计算,其中正确还原几何体,利用方格数据分割与计算是解题的关键.2.B【解析】
根据复数除法的运算法则,即可求解.【详解】.故选:B.【点睛】本题考查复数的代数运算,属于基础题.3.A【解析】
根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.4.D【解析】
先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是.故选:D【点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.5.C【解析】
对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【详解】当时,,显然当时有,,∴经单调性分析知为的第一个极值点又∵时,∴,,,…,均为其极值点∵函数不能在端点处取得极值∴,,∴对应极值,,∴故选:C【点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题6.B【解析】
由抛物线的定义转化,列出方程求出p,即可得到抛物线方程.【详解】由抛物线y2=2px(p>0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,,所以抛物线的标准方程为:y2=2x.故选B.【点睛】本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题.7.D【解析】
由对数运算法则和等比数列的性质计算.【详解】由题意.故选:D.【点睛】本题考查等比数列的性质,考查对数的运算法则.掌握等比数列的性质是解题关键.8.A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.9.C【解析】
根据给定的程序框图,逐次计算,结合判断条件,即可求解.【详解】由题意,执行上述程序框图,可得第1次循环,满足判断条件,;第2次循环,满足判断条件,;第3次循环,满足判断条件,;第4次循环,满足判断条件,;不满足判断条件,输出.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.10.B【解析】
根据三角函数定义得到,故,再利用和差公式得到答案.【详解】∵角的终边过点,∴,.∴.故选:.【点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.11.C【解析】
由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【详解】由,所以,对应点.故选:C【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.12.D【解析】
集合.为自然数集,由此能求出结果.【详解】解:集合.为自然数集,在A中,,正确;在B中,,正确;在C中,,正确;在D中,不是的子集,故D错误.故选:D.【点睛】本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
利用复数的乘法运算求出,再利用共轭复数的概念即可求解.【详解】由,则.故答案为:【点睛】本题考查了复数的四则运算以及共轭复数的概念,属于基础题.14.22【解析】
设双曲线的右焦点为,根据周长为,计算得到答案.【详解】设双曲线的右焦点为.周长为:.当共线时等号成立,故,即实轴长为,.故答案为:;.【点睛】本题考查双曲线周长的最值问题,离心率,实轴长,意在考查学生的计算能力和转化能力.15.18【解析】
先由,可得,再结合等差数列的前项和公式求解即可.【详解】解:因为,所以,.故答案为:18.【点睛】本题考查了等差数列基本量的运算,重点考查了等差数列的前项和公式,属基础题.16.1.【解析】
先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】
(1)首先通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;(2)首先确定m的值,然后利用柯西不等式即可证得题中的不等式.【详解】(1)因为函数定义域为,即恒成立,所以恒成立由单调性可知当时,有最大值为4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值为.当且仅当,,时,等号成立【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,意在考查学生的转化能力和计算求解能力.18.(1)单调递减区间为,,无单调递增区间(2)证明见解析【解析】
(1)求导,根据导数的正负判断单调性,(2)整理,化简为,令,求的单调性,以及,即证.【详解】解:(1)函数定义域为,则,令,,则,当,,单调递减;当,,单调递增;故,,,,故函数的单调递减区间为,,无单调递增区间.(2)证明,即为,因为,即证,令,则,令,则,当时,,所以在上单调递减,则,,则在上恒成立,所以在上单调递减,所以要证原不等式成立,只需证当时,,令,,,可知对于恒成立,即,即,故,即证,故原不等式得证.【点睛】本题考查利用导数研究函数的单调性,利用导数证明不等式,函数的最值问题,属于中档题.19.(1)证明见解析(0,2);(2)存在,理由见解析【解析】
(1)设直线l的方程为y=kx+b代入抛物线的方程,利用OA⊥OB,求出b,即可知直线过定点(2)由斜率公式分别求出,,联立直线与抛物线,椭圆,再由根与系数的关系得,,,代入,,化简即可求解.【详解】(1)证明:由题知,直线l的斜率存在且不过原点,故设由可得,.,,故所以直线l的方程为故直线l恒过定点.(2)由(1)知设由可得,,即存在常数满足题意.【点睛】本题主要考查了直线与抛物线、椭圆的位置关系,直线过定点问题,考查学生分析解决问题的能力,属于中档题.20.(1)3;(2).【解析】
(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程组即可.【详解】(1)在中,已知,,,由正弦定理,得,解得.(2)因为,所以,解得.在中,由余弦定理得,,即,,故.【点睛】本题考查正余弦定理在解三角形中的应用,考查学生的计算能力,是一道中档题.21.(1)(2)见解析(3)见解析【解析】试题分析:利用赋值法求出关系,求函数导数,要求函数有两个极值点,只需在内有两个实根,利用一元二次方程的根的分布求出的取值范围,再根据函数图象和极值的大小判断零点的个数.试题解析:(Ⅰ)根据题意:令,可得,所以,经验证,可得当时,对任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在两个极值点,,则须有有两个不相等的正数根,所以或解得或无解,所以的取值范围,可得,由题意知,令,则.而当时,,即,所以在上单调递减,所以即时,.(Ⅲ)因为,.令得,.由(Ⅱ)知时,的对称轴,,,所以.又,可得,此时,在上单调递减,上单调递增,上单调递减,所以最多只有三个不同的零点.又因为,所以在上递增,即时,恒成立.根据(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三个不同的零点:,1,.综上所述,恰有三个不同的零点.【点睛】利用赋值法求出关系,利用函数导数,研究函数的单调性,要求函数有两个极值点,只需在内有两个实根,利用一元二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新鲜生鲜配送合作协议书范文
- 电力设备捐赠协议书范文范本
- 化妆品定制协议书范文模板下载
- 工程合伙人协议书范文模板下载电子版
- 2015汽车四级修理工试题真题(答案)2
- 2020学前教育顶岗实习报告范文5篇
- 第一章小组工作发展历史
- 博弈论与信息经济学讲义91
- 2023-2024学年四川省成都市双流棠湖中学招生全国统一考试模拟卷数学试题
- 工地试验室管理制度及奖惩制度
- 2022年2022年古籍样式排版模板
- 大班绘本:喜欢钟表的国王ppt课件
- 艺术装饰艺术运动
- 樊登读书会营销策略分析
- 建设单位安全生产管理体系(完整版)
- 国潮风喜迎中秋节传统节日介绍主题班会PPT模板
- 工程维修承诺书范本
- 盾构施工管片防水材料粘贴作业指导书
- 《工作协调单》模板
- 《电动汽车》课件(PPT)
- 火力发电厂 施工图设计计守则( 热 机 篇)
评论
0/150
提交评论