版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级数学上册第十三章轴对称同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如图,按以下步骤进行尺规作图:(1)以点为圆心,任意长为半径作弧,交的两边,分别于,两点;(2)分别以点,为圆心,大于的长为半径作弧,两弧在内交于点;(3)作射线,连接,,.下列结论错误的是(
)A.垂直平分 B. C. D.2、下列电视台标志中是轴对称图形的是(
)A. B.C. D.3、如图,D是等边的边AC上的一点,E是等边外一点,若,,则对的形状最准确的是(
).A.等腰三角形 B.直角三角形 C.等边三角形 D.不等边三角形4、北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是(
)A. B. C. D.5、等腰三角形的一个内角是80°,则它的底角是(
)A.50° B.80° C.50°或80° D.20°或80°6、已知点与点关于轴对称,则点的坐标为(
)A. B. C. D.7、如图,△ABC和△ECD都是等腰直角三角形,△ABC的顶点A在△ECD的斜边DE上.下列结论:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD是直角三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个8、如图,在中,,,,则(
)A. B. C. D.9、以下四大通讯运营商的企业图标中,是轴对称图形的是()A. B. C. D.10、如图,在中,DE是AC的垂直平分线,,的周长为13cm,则的周长为(
)A.16cm B.13cm C.19cm D.10cm第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一张直角三角形纸片对折,使点B、C重合,折痕为DE,连接DC,若AC=6cm,∠ACB=90°,∠B=30°,则△ADC的周长是_____cm.2、如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.3、如图,点与点关于直线对称,则______.4、如图,中,D,E分别是AC,AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定是等腰三角形(用序号写出一种情形):_______.5、点P关于x轴对称点是,点P关于y轴对称点是,则__________.三、解答题(5小题,每小题10分,共计50分)1、已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.2、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.3、如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.4、已知:如图,,相交于点O,,.求证:(1);(2).5、如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的长.-参考答案-一、单选题1、D【解析】【分析】利用全等三角形的性质以及线段的垂直平分线的判定解决问题即可.【详解】解:由作图可知,在△OCD和△OCE中,,∴△OCD≌△OCE(SSS),∴∠DCO=∠ECO,∠1=∠2,∵OD=OE,CD=CE,∴OC垂直平分线段DE,故A,B,C正确,没有条件能证明CE=OE,故选:D.【考点】本题考查了作图-基本作图,全等三角形的判定和性质,线段的垂直平分线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.【详解】解:A选项中的图形是轴对称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A.【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键.3、C【解析】【分析】先根据已知利用SAS判定△ABD≌△ACE得出AD=AE,∠BAD=∠CAE=60°,从而推出△ADE是等边三角形.【详解】解:∵三角形ABC为等边三角形,∴AB=AC,∵BD=CE,∠1=∠2,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE=60°,∴△ADE是等边三角形.故选:C.【考点】本题考查了等边三角形的判定和全等三角形的判定方法,掌握等边三角形的判定和全等三角形的判定是本题的关键,做题时要对这些知识点灵活运用.4、D【解析】【分析】根据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,故不符合题意;D是轴对称图形,故选D.【考点】本题考查了轴对称图形的定义,准确理解定义是解题的关键.5、C【解析】【分析】先分情况讨论:80°是等腰三角形的底角或80°是等腰三角形的顶角,再根据三角形的内角和定理进行计算.【详解】解:当80°是等腰三角形的顶角时,则顶角就是80°,底角为(180°80°)=50°;当80°是等腰三角形的底角时,则顶角是180°80°×2=20°.∴等腰三角形的底角为50°或80°;故选:C.【考点】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6、B【解析】【分析】根据关于轴对称的性质:横坐标相等,纵坐标互为相反数,即可得解.【详解】由题意,得与点关于轴对称点的坐标是,故选:B.【考点】此题主要考查关于轴对称的点坐标的求解,熟练掌握,即可解题.7、C【解析】【分析】根据等腰直角三角形的性质得到CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,则可根据“SAS”证明△ACE≌△BCD,于是可对①进行判断;利用三角形外角性质得到∠DAB+∠BAC=∠E+∠ACE,加上∠CAB=∠E=45°,则可得对②进行判断;利用CE=CD和三角形三边之间的关系可对③进行判断;根据△ACE≌△BCD得到∠BDC=∠E=45°,则可对④进行判断.【详解】∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,∵∠ACE+∠ACD=∠ACD+∠BCD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),所以①正确;∵∠DAC=∠E+∠ACE,即∠DAB+∠BAC=∠E+∠ACE,而∠CAB=∠E=45°,∴∠DAB=∠ACE,所以②正确;∵AE+AC>CE,CE=CD,∴AE+AC>CD,所以③错误;∵△ACE≌△BCD,∴∠BDC=∠E=45°,∵∠CDE=45°,∴∠ADB=∠ADC+∠BDC=45°+45°=90°,∴△ADB为直角三角形,所以④正确.故选:C.【考点】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键.8、D【解析】【分析】先根据等腰三角形的性质得到∠B的度数,再根据平行线的性质得到∠BCD.【详解】解:∵AB=AC,∠A=40°,∴∠B=∠ACB=70°,∵CD∥AB,∴∠BCD=∠B=70°,故选D.【考点】本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.9、D【解析】【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得.【详解】解:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D.【考点】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键.10、C【解析】【分析】根据线段垂直平分线性质得出,求出AC和的长,即可求出答案.【详解】解:∵DE是AC的垂直平分线,,∴,,∵的周长为13cm,∴,∴,∴的周长为,故选:C.【考点】考查垂直平分线的性质,三角形周长问题,解题的关键是掌握垂直平分线的性质.二、填空题1、18【解析】【分析】【详解】解:根据折叠前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周长是18cm.故答案为8.2、70【解析】【分析】先利用HL证明△ABE≌△CBF,可证∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【详解】∵∠ABC=90°,AB=AC,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为70.【考点】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3、-5【解析】【分析】根据点与点关于直线对称求得a,b的值,最后代入求解即可.【详解】解:∵点与点关于直线对称∴a=-2,,解得b=-3∴a+b=-2+(-3)=-5故答案为-5.【考点】本题考查了关于y=-1对称点的性质,根据对称点的性质求得a、b的值是解答本题的关键.4、①③或②③【解析】【分析】已知①③条件,先证△BEO≌△CDO,再证明∠ABC=∠ACB最后得到△ABC是等腰三角形;已知②③条件可证明△BEO≌△CDO,再证明△ABC是等腰三角形.【详解】解:①③或②③.由①③证明△ABC是等腰三角形.在△BEO和△CDO中,∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD.∴△BEO≌△CDO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC.因此△ABC是等腰三角形.由②③证明△ABC是等腰三角形.在△BEO和△CDO中,∵∠EOB=∠DOC,∠BEO=∠CDO,BE=CD,∴△BEO≌△CDO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC.∴△ABC是等腰三角形.故答案为:①③或②③.【考点】本题考查了全等三角形的判定与性质、等腰三角形的判定;其中掌握用“AAS”判定两个三角形全等和用“等角对等边”判定三角形为等腰三角形是解决本题的关键.5、1【解析】【分析】根据关于坐标轴的对称点的坐标特征,求出a,b的值,即可求解.【详解】∵点P关于x轴对称点是,∴P(a,-2),∵点P关于y轴对称点是,∴b=-2,a=3,∴1,故答案是:1.【考点】本题主要考查关于坐标轴对称的点的坐标特征,熟练掌握“关于x轴对称的两点,横坐标相等,纵坐标互为相反数;关于y轴对称的两点,横坐标互为相反数,纵坐标相等”是解题的关键.三、解答题1、(1)证明见解析;(2)△ACD、△ABE、△BCE、△BHG.【解析】【详解】分析:(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.详解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE×DE=×2a×a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=AE•BE=•(2a)•2a=2a2,S△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.2、(1)30°;(2)4.【解析】【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【详解】(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【考点】本题主要考查了运用三角形的内角和算出角度,并能判定等边三角形,会运用含30°角的直角三角形的性质.3、(1)见解析(2)等腰三角形,证明见解析【解析】【分析】(1)利用HL公理证明Rt△ABC≌Rt△DCB;(2)利用Rt△ABC≌Rt△DCB证明∠ACB=∠DBC,从而证明△OBC是等腰三角形.(1)证明:在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区参与与公益活动计划
- 光伏设备项目风险管理手册
- 高中阅读理解方法课件(26张)
- 企业学校招聘会39
- 中医食疗之脂肪肝
- 公共服务领域廉洁治理方案
- 粉煤灰的循环经济合作开发协议
- 金融专业答辩
- 汉语拼音《aoe》教案
- 机场安保管理服务方案
- 河南师范大学《解析几何》2021-2022学年第一学期期末试卷
- 2024-2030年听力保护耳塞行业市场现状供需分析及投资评估规划分析研究报告
- 2024年中国智慧养老行业市场现状、发展概况、未来前景分析报告
- 少儿美术课件国家宝藏系列《凤冠》
- 天翼云从业者认证考试题库及答案
- 旅游景区的提升规划方案
- 国家能源集团国神公司招聘笔试题库2024
- 扬州树人学校2024-2025七年级上学期9月月考数学试卷及答案
- 课件:七年级道德与法治上册(统编版2024)-【新教材解读】义务教育教材内容解读课件
- 002医疗器械质量安全关键岗位人员岗位说明
- 2024-2030年中国木制品行业市场深度发展趋势与前景展望战略分析报告
评论
0/150
提交评论