版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
模型介绍模型介绍一、如图,点A坐标为(1,1),点B坐标为(4,3),在x轴上取点C使得△ABC是等腰三角形.【几何法】“两圆一线”得坐标(1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB.【注意】若有三点共线的情况,则需排除.作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.同理可求,下求.显然垂直平分线这个条件并不太适合这个题目,如果A、B均往下移一个单位,当点A坐标为(1,0),点B坐标为(4,2)时,可构造直角三角形勾股解:而对于本题的,或许代数法更好用一些.【代数法】表示线段构相等(1)表示点:设点坐标为(m,0),又A点坐标(1,1)、B点坐标(4,3),(2)表示线段:,(3)分类讨论:根据,可得:,(4)求解得答案:解得:,故坐标为.小结几何法:(1)“两圆一线”作出点;(2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标.代数法:(1)表示出三个点坐标A、B、C;(2)由点坐标表示出三条线段:AB、AC、BC;(3)根据题意要求取①AB=AC、②AB=BC、③AC=BC;(4)列出方程求解.问题总结:(1)两定一动:动点可在直线上、抛物线上;(2)一定两动:两动点必有关联,可表示线段长度列方程求解;(3)三动点:分析可能存在的特殊边、角,以此为突破口.二、【问题描述】如图,在平面直角坐标系中,点A坐标为(1,1),点B坐标为(5,3),在x轴上找一点C使得△ABC是直角三角形,求点C坐标.【几何法】两线一圆得坐标(1)若∠A为直角,过点A作AB的垂线,与x轴的交点即为所求点C;(2)若∠B为直角,过点B作AB的垂线,与x轴的交点即为所求点C;(3)若∠C为直角,以AB为直径作圆,与x轴的交点即为所求点C.(直径所对的圆周角为直角)重点还是如何求得点坐标,求法相同,以为例:【构造三垂直】求法相同,以为例:构造三垂直步骤:第一步:过直角顶点作一条水平或竖直的直线;第二步:过另外两端点向该直线作垂线,即可得三垂直相似.例题精讲例题精讲考点一:二次函数中的直角三角形存在性问题【例1】.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠PAB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.变式训练【变1-1】.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(4,0),B(﹣1,0),交y轴于点C.(1)求抛物线的解析式;(2)点D是直线AC上一动点,过点D作DE垂直于y轴于点E,过点D作DF⊥x轴,垂足为F,连接EF,当线段EF的长度最短时,求出点D的坐标;(3)在AC上方的抛物线上是否存在点P,使得△ACP是直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.考点二:二次函数中的等腰三角形存在性问题【例2】.如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标.(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.变式训练【变2-1】.如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数关系式和点B的坐标;(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【变2-2】.如图,抛物线y=ax2+4x+c经过A(﹣3,﹣4),B(0,﹣1)两点,点P是y轴左侧且位于x轴下方抛物线上一动点,设其横坐标为m.(1)直接写出抛物线的解析式;(2)将线段AB绕点B顺时针旋转90°得线段BD(点D是点A的对应点),求点D的坐标,并判断点D是否在抛物线上;(3)过点P作PM⊥x轴交直线BD于点M,试探究是否存在点P,使△PBM是等腰三角形?若存在,求出点m的值;若不存在,说明理由.1.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),连接AC,点P为第二象限抛物线上的动点.(1)求a、b、c的值;(2)连接PA、PC、AC,求△PAC面积的最大值;(3)在抛物线的对称轴上是否存在一点Q,使得△QAC为直角三角形,若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理由.2.已知抛物线y=﹣x2﹣x的图象如图所示:(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为.(2)判断△ABC的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.3.如图,抛物线y=﹣x2+x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D,抛物线的对称轴与x轴交于点E,连接AC,BD.(1)求点A,B,C,D的坐标;(2)点F为抛物线对称轴上的动点,且△BEF与△AOC相似,请直接写出符合条件的点F的坐标;(3)点P为抛物线上的动点,是否存在这样的点P,使△BDP是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.4.如图,已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,其中A(﹣1,0),C(0,3).(1)求该抛物线的函数表达式;(2)抛物线与直线y=﹣x﹣1交于A、E两点,P是x轴上点B左侧一动点,当以P、B、C为顶点的三角形与△ABE相似时,求点P的坐标;(3)若F是直线BC上一动点,在抛物线上是否存在动点M,使△MBF为等腰直角三角形,若存在,请直接写出点M的坐标;否则说明理由.5.如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,且BO=OC=3AO.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的点P坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象交x轴于点A、B,交y轴于点C,其顶点为D,已知AB=4,∠ABC=45°,OA:OB=1:3.(1)求二次函数的表达式及其顶点D的坐标;(2)点M是线段BC上方抛物线上的一个动点,点N是线段BC上一点,当△MBC的面积最大时,求:①点M的坐标,说明理由;②MN+BN的最小值;(3)在二次函数的图象上是否存在点P,使得以点P、A、C为顶点的三角形为直角三角形?若存在,求出点P坐标;若不存在,请说明理由.7.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.8.如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,且与y轴相交于点C,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点C的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为直角三角形,请直接写出所有符合条件的点M的坐标.9.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数表达式;(2)在抛物线对称轴上是否存在一点M,使以A,N,M为顶点的三角形是直角三角形?若存在,请求出M点的坐标.若不存在,请说明理由.10.抛物线y=ax2+bx+c的图象与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.11.如图,已知抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B(3,0)两点(点A在点B的左侧),与y轴交于点C.(1)求抛物线的解析式;(2)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请求出点M的坐标.(3)如图1,P为直线BC上方的抛物线上一点,PD∥y轴交BC于D点,过点D作DE⊥AC于E点.设m=PD+DE,求m的最大值及此时P点坐标.12.如图,抛物线y=﹣x2+bx+c与x轴交于点A和B(5,0),与y轴交于点C(0,5).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点M,与BC交于点F,点D是对称轴上一点,当点D关于直线BC的对称点E在抛物线上时,求点E的坐标;(3)点P在抛物线的对称轴上,点Q在直线BC上方的抛物线上,是否存在以O,P,Q为顶点的三角形是等腰直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.13.已知如图1,在以O为原点的平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,﹣1),连接AC,AO=2CO,直线l过点G(0,t)且平行于x轴,t<﹣1.(1)求抛物线对应的二次函数的解析式;(2)若D(﹣4,m)为抛物线y=x2+bx+c上一定点,点D到直线l的距离记为d,当d=DO时,求t的值.(3)如图2,若E(﹣4,m)为上述抛物线上一点,在抛物线上是否存在点F,使得△BEF是直角三角形,若存在求出点F的坐标,若不存在说明理由.14.如图①,抛物线y=ax2+bx+c与x轴相交于O、A两点,直线y=﹣x+3与y轴交于B点,与该抛物线交于A,D两点,已知点D横坐标为﹣1.(1)求这条抛物线的解析式;(2)如图①,在线段OA上有一动点H(不与O、A重合),过H作x轴的垂线分别交AB于P点,交抛物线于Q点,若x轴把△POQ分成两部分的面积之比为1:2,请求出H点的坐标;(3)如图②,在抛物线上是否存在点C,使△ABC为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.15.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(1)求此函数的关系式;(2))在AC下方的抛物线上有一点N,过点N作直线l∥y轴,交AC与点M,当点N坐标为多少时,线段MN的长度最大?最大是多少?(3)在对称轴上有一点K,在抛物线上有一点L,若使A,B,K,L为顶点形成平行四边形,求出K,L点的坐标.(4)在y轴上是否存在一点E,使△ADE为直角三角形,若存在,直接写出点E的坐标;若不存在,说明理由.16.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,请问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.17.如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.18.如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)点N坐标为(0,2),点M在抛物线上,且∠NBM=45°,直接写出点M坐标;(4)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.19.如图,已知直线y=3x﹣3分别交x轴,y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)在抛物线的对称轴上求一点P,使△ABP的周长最小,并求出最小周长和P点的坐标;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.20.如图,已知直线y=3x+3与x轴交于点A,与y轴交于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△ABP是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,说明理由.(3)在抛物线上求一点Q,使得△ACQ为以AC为底边的等腰三角形,并写出Q点的坐标;(4)除(3)中所求的Q点外,在抛物线上是否还存在其它的点Q使得△ACQ为等腰三角形?若存在,请求出一共有几个满足条件的点Q(要求简要说明理由,但不证明);若不存在这样的点Q,请说明理由.21.如图,抛物线交x轴于A(﹣2,0),B(3,0)两点,与y轴交于点C(0,3),连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.22.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b的解析式.(k,b可用含m的式子表示)23.如图,直线y=x+3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点,与y轴交于点C.(1)如图①,连接BC,在y轴上存在一点D,使得△BCD是以BC为底的等腰三角形,求点D的坐标;(2)如图②,在抛物线上是否存在点E,使△EAC是以AC为底的等腰三角形?若存在,求出点E的坐标;若不存在,请说明理由;(3)如图③,连接BC,在直线AC上是否存在点F,使△BCF是以BC为腰的等腰三角形?若存在,求出点F的坐标;若不存在,请说明理由;(4)如图④,若抛物线的顶点为H,连接AH,在x轴上是否存在一点K,使△AHK是等腰三角形?若存在,求出点K的坐标;若不存在,请说明理由;(5)如图⑤,在抛物线的对称轴上是否存在点G,使△ACG是等腰三角形?若存在,求出点G的坐标;若不存在,请说明理由.
模型介绍模型介绍一、如图,点A坐标为(1,1),点B坐标为(4,3),在x轴上取点C使得△ABC是等腰三角形.【几何法】“两圆一线”得坐标(1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB.【注意】若有三点共线的情况,则需排除.作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.同理可求,下求.显然垂直平分线这个条件并不太适合这个题目,如果A、B均往下移一个单位,当点A坐标为(1,0),点B坐标为(4,2)时,可构造直角三角形勾股解:而对于本题的,或许代数法更好用一些.【代数法】表示线段构相等(1)表示点:设点坐标为(m,0),又A点坐标(1,1)、B点坐标(4,3),(2)表示线段:,(3)分类讨论:根据,可得:,(4)求解得答案:解得:,故坐标为.小结几何法:(1)“两圆一线”作出点;(2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标.代数法:(1)表示出三个点坐标A、B、C;(2)由点坐标表示出三条线段:AB、AC、BC;(3)根据题意要求取①AB=AC、②AB=BC、③AC=BC;(4)列出方程求解.问题总结:(1)两定一动:动点可在直线上、抛物线上;(2)一定两动:两动点必有关联,可表示线段长度列方程求解;(3)三动点:分析可能存在的特殊边、角,以此为突破口.二、【问题描述】如图,在平面直角坐标系中,点A坐标为(1,1),点B坐标为(5,3),在x轴上找一点C使得△ABC是直角三角形,求点C坐标.【几何法】两线一圆得坐标(1)若∠A为直角,过点A作AB的垂线,与x轴的交点即为所求点C;(2)若∠B为直角,过点B作AB的垂线,与x轴的交点即为所求点C;(3)若∠C为直角,以AB为直径作圆,与x轴的交点即为所求点C.(直径所对的圆周角为直角)重点还是如何求得点坐标,求法相同,以为例:【构造三垂直】求法相同,以为例:构造三垂直步骤:第一步:过直角顶点作一条水平或竖直的直线;第二步:过另外两端点向该直线作垂线,即可得三垂直相似.例题精讲例题精讲考点一:二次函数中的直角三角形存在性问题【例1】.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠PAB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)设y=(x﹣2)2+k,把A(﹣1,0)代入得:(﹣1﹣2)2+k=0,解得:k=﹣9,∴y=(x﹣2)2﹣9=x2﹣4x﹣5,答:抛物线的解析式为y=x2﹣4x﹣5;(2)过点P作PM⊥x轴于点M,如图:设P(m,m2﹣4m﹣5),则PM=|m2﹣4m﹣5|,∵A(﹣1,0),∴AM=m+1∵∠PAB=45°∴AM=PM,∴|m2﹣4m﹣5|=m+1,即m2﹣4m﹣5=m+1或m2﹣4m﹣5=﹣(m+1),当m2﹣4m﹣5=m+1时,解得:m1=6,m2=﹣1(不合题意,舍去),当m2﹣4m﹣5=﹣(m+1),解得m3=4,m4=﹣1(不合题意,舍去),∴P的坐标是(6,7)或P(4,﹣5);(3)在抛物线的对称轴上存在一点Q,使得△BCQ是直角三角形,理由如下:在y=x2﹣4x﹣5中,令x=0得y=﹣5,令y=0得x=﹣1或x=5,∴B(5,0),C(0,﹣5),由抛物线y=x2﹣4x﹣5的对称轴为直线x=2,设Q(2,t),∴BC2=50,BQ2=9+t2,CQ2=4+(t+5)2,当BC为斜边时,BQ2+CQ2=BC2,∴9+t2+4+(t+5)2=50,解得t=﹣6或t=1,∴此时Q坐标为(2,﹣6)或(2,1);当BQ为斜边时,BC2+CQ2=BQ2,∴50+4+(t+5)2=9+t2,解得t=﹣7,∴此时Q坐标为(2,﹣7);当CQ为斜边时,BC2+BQ2=CQ2,∴50+9+t2=4+(t+5)2,解得t=3,∴此时Q坐标为(2,3);综上所述,Q的坐标为(2,3)或(2,﹣7)或(2,1)或(2,﹣6).变式训练【变1-1】.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(4,0),B(﹣1,0),交y轴于点C.(1)求抛物线的解析式;(2)点D是直线AC上一动点,过点D作DE垂直于y轴于点E,过点D作DF⊥x轴,垂足为F,连接EF,当线段EF的长度最短时,求出点D的坐标;(3)在AC上方的抛物线上是否存在点P,使得△ACP是直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.解:(1)∵抛物线y=ax2+bx+4经过点A(4,0),B(﹣1,0),∴,解得:,∴抛物线的解析式为:y=﹣x2+3x+4;(2)连接OD,由题意知,四边形OFDE是矩形,则OD=EF,据垂线段最短,可知:当OD⊥AC时,OD最短,即EF最短.由(1)知,在Rt△AOC中,OC=OA=4,∴AC=4.又∵D为AC的中点.∴DF∥OC,∴DF=OC=2,∴点D的坐标为(2,2);(3)假设存在,设点P的坐标为(m,﹣m2+3m+4).∵点A的坐标为(4,0),点C的坐标为(0,4),∴AP2=(m﹣4)2+(﹣m2+3m+4﹣0)2=m4﹣6m3+2m2+16m+32,CP2=(m﹣0)2+(﹣m2+3m+4﹣4)2=m4﹣6m3+10m2,AC2=(0﹣4)2+(4﹣0)2=32.分两种情况考虑,①当∠ACP=90°时,AP2=CP2+AC2,即m4﹣6m3+2m2+16m+32=m4﹣6m3+10m2+32,整理得:m2﹣2m=0,解得:m1=0(舍去),m2=2,∴点P的坐标为(2,6);②当∠APC=90°时,CP2+AP2=AC2,即m4﹣6m3+10m2+m4﹣6m3+2m2+16m+32=32,整理得:m(m3﹣6m2+6m+8)=0,∴m(m﹣4)(m2﹣2m﹣2)=0,解得:m1=0(舍去),m2=4(舍去),(舍去),,∴点P的坐标为(1+,3+).综上所述,假设成立,即存在点P(2,6)或(1+,3+),使得△ACP是直角三角形.考点二:二次函数中的等腰三角形存在性问题【例2】.如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标.(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.解:(1)由题意得,﹣1+5+n=0,解得,n=﹣4,∴抛物线的解析式为y=﹣x2+5x﹣4;(2)y=﹣x2+5x﹣4=﹣(x﹣)2+,抛物线对称轴为:x=,顶点坐标为(,);(3)∵点A的坐标为(1,0),点B的坐标为(0,﹣4),∴OA=1,OB=4,在Rt△OAB中,AB==,①当PB=BA时,PB=,∴OP=PB﹣OB=﹣4,此时点P的坐标为(0,﹣4),②当PA=AB时,OP=OB=4此时点P的坐标为(0,4).变式训练【变2-1】.如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数关系式和点B的坐标;(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)把点A(4,0)代入二次函数有:0=﹣16+4b+3得:b=所以二次函数的关系式为:y=﹣x2+x+3.当x=0时,y=3∴点B的坐标为(0,3).(2)如图:作AB的垂直平分线交x轴于点P,连接BP,则:BP=AP设BP=AP=x,则OP=4﹣x,在直角△OBP中,BP2=OB2+OP2即:x2=32+(4﹣x)2解得:x=∴OP=4﹣=所以点P的坐标为:(,0)综上可得点P的坐标为(,0).【变2-2】.如图,抛物线y=ax2+4x+c经过A(﹣3,﹣4),B(0,﹣1)两点,点P是y轴左侧且位于x轴下方抛物线上一动点,设其横坐标为m.(1)直接写出抛物线的解析式;(2)将线段AB绕点B顺时针旋转90°得线段BD(点D是点A的对应点),求点D的坐标,并判断点D是否在抛物线上;(3)过点P作PM⊥x轴交直线BD于点M,试探究是否存在点P,使△PBM是等腰三角形?若存在,求出点m的值;若不存在,说明理由.解:(1)把点A(﹣3,﹣4),B(0,﹣1)代入解析式y=ax2+4x+c,得,解得,∴y=x2+4x﹣1;(2)如图,作AC⊥y轴于点C,作DH⊥y轴于点H,∵∠CAB+∠ABC=90°,∠HBD+∠ABC=90°,∴∠CAB=∠HBD,在△ABC和△DBH中,,∴△ABC≌△BDH(AAS),∴HB=AC=3,DH=BC=3,∴OH=2,∴D(﹣3,2),把D(﹣3,2)代入y=x2+4x﹣1中,得(﹣3)2+4×(﹣3)﹣1=﹣4≠2,∴点D不在抛物线上;(3)存在点P,∵D(﹣3,2),B(0,﹣1),∴直线BD的解析式为y=﹣x﹣1,设P(m,m2+4m﹣1),则M(m,﹣m﹣1),由(2)知:∠BMP=45°,当△PBM是等腰三角形,且45°为底角时,有∠MBP=90°或∠MPB=90°,若∠MBP=90°,则P与A重合,即m=﹣3,若∠MPB=90°,则PB∥x轴,即P的纵坐标为﹣1,∴m2+4m﹣1=﹣1,解得m=0(舍)或m=﹣4,∴m=﹣4,若45°为顶角,即MP=MB,∵MP=﹣m﹣1﹣m2﹣4m+1=﹣m2﹣5m,MB=﹣=﹣,∴﹣m2﹣5m=﹣m,解得m=0(舍)或m=﹣5+,∴m的值为﹣3,﹣4,﹣5.1.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),连接AC,点P为第二象限抛物线上的动点.(1)求a、b、c的值;(2)连接PA、PC、AC,求△PAC面积的最大值;(3)在抛物线的对称轴上是否存在一点Q,使得△QAC为直角三角形,若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点∴,解得:∴a=﹣1,b=﹣2,c=3;(2)如图1,过点P作PE∥y轴,交AC于E,∵A(﹣3,0),C(0,3),∴直线AC的解析式为y=x+3,由(1)知,抛物线的解析式为y=﹣x2﹣2x+3,设点P(m,﹣m2﹣2m+3),则E(m,m+3),∴S△ACP=PE•(xC﹣xA)=×[﹣m2﹣2m+3﹣(m+3)]×(0+3)=﹣(m2﹣3m)=﹣(m+)2+,∴当m=﹣时,S△PAC最大=;(3)存在,点Q的坐标为:(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).如图2,∵A(﹣3,0),C(0,3),∴OA=OC=3,∴AC2=OA2+OC2=32+32=18,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线对称轴为x=﹣1,设点Q(﹣1,n),则AQ2=[﹣1﹣(﹣3)]2+n2=n2+4,CQ2=[0﹣(﹣1)]2+(n﹣3)2=n2﹣6n+10,∵△QAC为直角三角形,∴∠CAQ=90°或∠ACQ=90°或∠AQC=90°,①当∠CAQ=90°时,根据勾股定理,得:AQ2+AC2=CQ2,∴n2+4+18=n2﹣6n+10,解得:n=﹣2,∴Q1(﹣1,﹣2);②当∠ACQ=90°时,根据勾股定理,得:CQ2+AC2=AQ2,∴n2﹣6n+10+18=n2+4,解得:n=4,∴Q2(﹣1,4);③当∠AQC=90°时,根据勾股定理,得:CQ2+AQ2=AC2,∴n2﹣6n+10+n2+4=18,解得:n1=,n2=,∴Q3(﹣1,),Q4(﹣1,);综上所述,点Q的坐标为:(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).2.已知抛物线y=﹣x2﹣x的图象如图所示:(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为y=﹣x2﹣x+2.(2)判断△ABC的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.解:(1)将该抛物线向上平移2个单位,得y=﹣x2﹣x+2,故答案为:y=﹣x2﹣x+2;(2)当y=0时,﹣x2﹣x+2=0,解得x1=﹣4,x2=1,即B(﹣4,0),A(1,0).当x=0时,y=2,即C(0,2).AB=1﹣(﹣4)=5,AB2=25,AC2=(1﹣0)2+(0﹣2)2=5,BC2=(﹣4﹣0)2+(0﹣2)2=20,∵AC2+BC2=AB2,∴△ABC是直角三角形;(3)y=﹣x2﹣x+2的对称轴是直线x=﹣,设P(﹣,n),AP2=(1+)2+n2=+n2,CP2=+(2﹣n)2,AC2=12+22=5当AP=AC时,AP2=AC2,+n2=5,方程无解;当AP=CP时,AP2=CP2,+n2=+(2﹣n)2,解得n=0,即P1(﹣,0),当AC=CP时AC2=CP2,+(2﹣n)2=5,解得n1=2+,n2=2﹣,P2(﹣,2+),P3(﹣,2﹣).综上所述:使得以A、C、P为顶点的三角形是等腰三角形,点P的坐标(﹣,0),(﹣,2+),(﹣,2﹣).3.如图,抛物线y=﹣x2+x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D,抛物线的对称轴与x轴交于点E,连接AC,BD.(1)求点A,B,C,D的坐标;(2)点F为抛物线对称轴上的动点,且△BEF与△AOC相似,请直接写出符合条件的点F的坐标;(3)点P为抛物线上的动点,是否存在这样的点P,使△BDP是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=6或﹣2,令x=0,则y=3,故点A、B、C的坐标分别为(﹣2,0)、(6,0)、(0,3),则函数的对称轴为直线x=(6﹣2)=2,当x=2时,y=﹣x2+x+3=4,即点D(2,4);(2)tan∠CAO=,当△BEF与△AOC相似时,则,即,解得:EF=6或,故点F的坐标为:(2,6)或(2,﹣6)或或;(3)存在,理由:△BDP是直角三角形只要可能是∠DBP和∠BDP为直角,①当∠DBP为直角时,过点B作y轴的平行线,交过点P与x轴的平行线于点H,交过点D与x轴的平行线于点G,∵DG=BG=4,则△BDG为等腰三角形,∠DBG=45°,则∠PBH=45°,即△PBH为等腰直角三角形,则设PH=BH=m,则点P(6﹣m,﹣m),将点P的坐标代入抛物线表达式得:﹣m=﹣(6﹣m)2+(6﹣m)+3,解得:m=0(舍去)或12,故点P的坐标为(﹣6,﹣12);②当∠BDP为直角时,∵AD=BD=3,AB=64,则△ABD为等腰直角三角形,即∠ADB=90°,即点P于点A重合,故点P(﹣2,0);综上,点P的坐标为(﹣2,0)或(﹣6,﹣12).4.如图,已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,其中A(﹣1,0),C(0,3).(1)求该抛物线的函数表达式;(2)抛物线与直线y=﹣x﹣1交于A、E两点,P是x轴上点B左侧一动点,当以P、B、C为顶点的三角形与△ABE相似时,求点P的坐标;(3)若F是直线BC上一动点,在抛物线上是否存在动点M,使△MBF为等腰直角三角形,若存在,请直接写出点M的坐标;否则说明理由.解:(1)把A(﹣1,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数表达式为y=﹣x2+2x+3;(2)联立直线AE和抛物线的函数关系式成方程组,得:,解得:,,∴点E的坐标为(4,﹣5),∴AE==5,在y=﹣x2+2x+3中,令y=0,得:﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴点B的坐标为(3,0),∵C(0,3),∴OB=OC=3,∵∠BOC=90°,∴∠CBO=45°,BC=3,∵直线AE的函数表达式为y=﹣x﹣1,∴∠BAE=45°=∠CBO.设点P的坐标为(m,0),则PB=3﹣m,∵以P、B、C为顶点的三角形与△ABE相似,∴=或=,∴=或=,解得:m=或m=﹣,∴点P的坐标为(,0)或(﹣,0);(3)∵∠CBO=45°,∴存在两种情况(如图2).①取点M1与点A重合,过点M1作M1F1∥y轴,交直线BC于点F1,∵∠CBM1=45°,∠BM1F1=90°,∴此时△BM1F1为等腰直角三角形,∴点M1的坐标为(﹣1,0);②取点C′(0,﹣3),连接BC′,延长BC′交抛物线于点M2,过点M2作M2F2∥y轴,交直线BC于点F2,∵点C、C′关于x轴对称,∠OBC=45°,∴∠CBC′=90°,BC=BC′,∴△CBC′为等腰直角三角形,∵M2F2∥y轴,∴△M2BF2为等腰直角三角形.∵点B(3,0),点C′(0,﹣3),∴直线BC′的函数关系式为y=x﹣3,联立直线BC′和抛物线的函数关系式成方程组,得:,解得:,,∴点M2的坐标为(﹣2,﹣5),综上所述:点M的坐标为(﹣1,0)或(﹣2,﹣5).5.如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,且BO=OC=3AO.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的点P坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx﹣3,∴c=﹣3,∴C(0,﹣3),∴OC=3,∵BO=OC=3AO,∴BO=3,AO=1,∴B(3,0),A(﹣1,0),∵该抛物线与x轴交于A、B两点,∴,∴,∴抛物线解析式为y=x2﹣2x﹣3,(2)存在,理由:设P(1,m),∵B(3,0),C(0,﹣3),∴BC=3,PB=,PC=,∵△PBC是等腰三角形,①当PB=PC时,∴=,∴m=﹣1,∴P(1,﹣1),②当PB=BC时,∴3=,∴m=±,∴P(1,)或P(1,﹣),③当PC=BC时,∴3=,∴m=﹣3±,∴P(1,﹣3+)或P(1,﹣3﹣),∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣).6.如图,在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象交x轴于点A、B,交y轴于点C,其顶点为D,已知AB=4,∠ABC=45°,OA:OB=1:3.(1)求二次函数的表达式及其顶点D的坐标;(2)点M是线段BC上方抛物线上的一个动点,点N是线段BC上一点,当△MBC的面积最大时,求:①点M的坐标,说明理由;②MN+BN的最小值;(3)在二次函数的图象上是否存在点P,使得以点P、A、C为顶点的三角形为直角三角形?若存在,求出点P坐标;若不存在,请说明理由.解:(1)∵∠ABC=45°,∴OB=OC,∵OA:OB=1:3,AB=4,∴OA=1,OB=3,∴OC=3,∴A(﹣1,0),B(3,0),C(0,3),将A、B、C代入y=ax2+bx+c中,∴,解得,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(2)①设BC的解析式为y=kx+b,∴,解得,∴y=﹣x+3,过点M作MG∥y轴交BC于点G,设M(t,﹣t2+2t+3),则G(t,﹣t+3),∴PG=﹣t2+2t+3+t﹣3=﹣t2+3t,∴S△MBC=×3×(﹣t2+3t)=﹣(t﹣)2+,∵0<t<3,∴当t=时,S△MBC有最大值,此时M(,);②过点M作MH⊥x轴交于H,交BC于N,∵∠OBC=45°,∴NH=BN,∴MN+BN=MN+NH≥MH,∵M(,),∴MH=,∴MN+BN的最小值为,故答案为:;(3)存在点P,使得以点P、A、C为顶点的三角形为直角三角形,理由如下:设P(m,﹣m2+2m+3),如图2,当∠ACP=90°时,过点C作EF∥x轴,过点A作AE⊥EF交于E,过点P作PF⊥EF交于F,∴∠ECA+∠FCP=90°,∵∠ACE+∠EAC=90°,∴∠FCP=∠EAC,∴△ACE∽△CPF,∴=,∴=,解得m=0(舍)或m=,∴P(,);如图3,当∠CAP=90°时,过点A作MN⊥x轴,过点C作CM⊥MN交于M,过点P作PN⊥MN交于N,∵∠MAC+∠NAP=90°,∠MAC+∠MCA=90°,∴∠NAP=∠MCA,∴△ACM∽△PAN,∴=,∴=,解得m=﹣1(舍)或m=,∴P(,﹣);综上所述:P点坐标为(,)或(,﹣).7.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.解:(1)将A(﹣3,0),B(4,0)代入y=ax2+bx+4,∴,解得,∴抛物线的表达式为:;(2)存在点Q,使得以A,C,Q为顶点的三角形是等腰三角形,理由如下:令x=0,则y=4,∴点C(0,4),∵A(﹣3,0)、C(0,4),∴AC=5,设直线BC的解析式为y=kx+b,∴,解得,∴y=﹣x+4,设点M(m,0),则点Q(m,﹣m+4),①当AC=CQ时,过点Q作QE⊥y轴于点E,连接AQ,∵CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:舍去负值),∴点;②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或m=0(舍去0),∴点Q(1,3);③当CQ=AQ时,则2m2=[m﹣(﹣3)]2+(﹣m+4)2,解得:舍去);综上所述,点Q的坐标为(1,3)或.8.如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,且与y轴相交于点C,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点C的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为直角三角形,请直接写出所有符合条件的点M的坐标.解:∵抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,∴,∴,∴抛物线的解析式为y=x2﹣2x﹣3,(2)如图1,∵点A,B关于直线l对称,∴连接BC交直线l于点P,由(1)知,抛物线的解析式为y=x2﹣2x﹣3,∴直线l:x=1,C(0,﹣3),∵B(3,0),∴直线BC的解析式为y=x﹣3,当x=1时,y=﹣2,∴P(1,﹣2),(3)设点M(1,m),∵A(﹣1,0),C(0,﹣3),∴AC2=10,AM2=m2+4,CM2=(m+3)2+1=m2+6m+10,∵△MAC为直角三角形,∴当∠ACM=90°时,∴AC2+CM2=AM2,∴10+m2+6m+10=m2+4,∴m=﹣,∴M(1,﹣)当∠CAM=90°时,∴AC2+AM2=CM2,∴10+m2+4=m2+6m+10,∴m=,∴M(1,)当∠AMC=90°时,AM2+CM2=AC2,∴m2+4+m2+6m+10=10,∴m=﹣1或m=﹣2,∴M(1,﹣1)或(1,﹣2),即:满足条件的点M的坐标为(1,﹣)或(1,)或(1,﹣1)或(1,﹣2).9.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数表达式;(2)在抛物线对称轴上是否存在一点M,使以A,N,M为顶点的三角形是直角三角形?若存在,请求出M点的坐标.若不存在,请说明理由.解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,解得,故抛物线的函数表达式为y=﹣x2+2x+3.设直线AC的函数表达式为y=kx+n,将A(﹣1,0)、C(2,3)分别代入y=kx+n中可得解得,故直线AC的函数表达式为y=x+1.(2)存在,理由:由抛物线的表达式知,其对称轴为x=1,设点M(1,m),∵A(﹣1,0),M(1,m),N(0,3),∴AM2=(1+1)2+m2=4+m2,同理AN2=10,MN2=1+(m﹣3)2.当AM是斜边时,则4+m2=10+1+(m﹣3)2,解得;当AN是斜边时,4+m2+1+(m﹣3)2=10,解得:m=1或2;当MN是斜边时,4+m2+10=1+(m﹣3)2,解得:.故点M的坐标为或(1,1)或(1,2)或.10.抛物线y=ax2+bx+c的图象与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),∴,解得,即此抛物线的解析式是y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴此抛物线顶点D的坐标是(1,﹣4),对称轴是直线x=1;(3)存在点P,使得以点P、D、A为顶点的三角形是等腰三角形,设点P的坐标为(1,y),当PA=PD时,则=,解得y=﹣,当DA=DP时,则=,解得y=﹣4±2,当AD=AP时,则=,解得,y=±4(舍去﹣4),由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,﹣)或(1,﹣4﹣2)或(1,﹣4+2)或(1,4).11.如图,已知抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B(3,0)两点(点A在点B的左侧),与y轴交于点C.(1)求抛物线的解析式;(2)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请求出点M的坐标.(3)如图1,P为直线BC上方的抛物线上一点,PD∥y轴交BC于D点,过点D作DE⊥AC于E点.设m=PD+DE,求m的最大值及此时P点坐标.解:(1)把A(﹣1,0),B(3,0)两点代入解析式y=ax2+bx+3,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)如图,当∠MCB=90°时,延长MC交x轴于点G,∵A(﹣1,0),B(3,0),C(0,3),∴OB=OC=3,AB=3﹣(﹣1)=4∴∠OBC=∠OCB=45°,∵∠MCB=90°,∴∠GCB=90°,∠GCO=45°,∴∠GCO=∠CGO=45°,∴OG=OC=3,∴G(﹣3,0),设直线GC的解析式为y=kx+3,∴0=﹣3k+3,解得k=1,∴直线GC的解析式为y=x+3,∴x=1时,y=x+3=4,此时M(1,4);如图,当∠MBC=90°时,延长BM交y轴于点H,∵A(﹣1,0),B(3,0),C(0,3),∴OB=OC=3,∴∠OBC=∠OCB=45°,∵∠MBC=90°,∴∠HBO=45°,∴∠HBO=∠BHO=45°,∴OH=OB=3,∴H(0,﹣3),设直线BH的解析式为y=px﹣3,∴0=3p﹣3,解得p=1,∴直线BH的解析式为y=x﹣3,∴x=1时,y=x﹣3=﹣2,此时M(1,﹣2);当∠CMB=90°时,设M(1,a),∵B(3,0),C(0,3),∴OB=OC=3,∴BC2=32+32=18,MC2=1+(a﹣3)2,BM2=4+a2,∵∠CMB=90°,∴BC2=MC2+BM2,∴18=1+(a﹣3)2+4+a2,整理,得a2﹣3a﹣2=0,解得,此时或;综上所述,点M(1,4)或点M(1,﹣2)或点或点.(3)如图,设PD与x轴的交点为F,点P(n,﹣n2+2n+3),∵B(3,0),C(0,3),设直线BC的解析式为y=qx+3,∴0=3q+3,解得q=﹣1,∴直线BC的解析式为y=﹣x+3,∴D(n,﹣n+3),∴PD=﹣n2+2n+3﹣(﹣n+3)=﹣n2+3n;∵A(﹣1,0),C(0,3),∴,∴,连接AD,∴,∵S△ADC=S△ABC﹣S△ADB,AB=3﹣(﹣1)=4∴,∴,∴∵抛物线开口向下,∴m有最大值,且当时,取得最大值,且为,此时,故点.12.如图,抛物线y=﹣x2+bx+c与x轴交于点A和B(5,0),与y轴交于点C(0,5).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点M,与BC交于点F,点D是对称轴上一点,当点D关于直线BC的对称点E在抛物线上时,求点E的坐标;(3)点P在抛物线的对称轴上,点Q在直线BC上方的抛物线上,是否存在以O,P,Q为顶点的三角形是等腰直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)∵点B(5,0),C(0,5)在抛物线y=﹣x2+bx+c上,∴,解得,,∴抛物线的解析式为y=﹣x2+4x+5;(2)设点M关于直线BC的对称点为点M′,连接MM′,BM′,则直线FM′为抛物线对称轴关于直线BC的对称直线,∵点E是点D关于直线BC的对称点,点E落在抛物线上,∴直线FM′与抛物线的交点E1,E2为D1,D2落在抛物线上的对称点,∵对称轴与x轴交于点M,与BC交于点F,∴,∴点M的坐标为(2,0),∵点C的坐标为(0,5),点B的坐标为(5,0),∴OB=OC,∴△OBC是等腰直角三角形,∴∠OBC=45°,∴△MBF是等腰直角三角形,∴MB=MF,∴点F的坐标为F(2,3),∵点M关于直线BC的对称点为点M′,∴BM′=BM,∠MBM′=90°,∴△MBM′是等腰直角三角形,∴BM′=BM=3,∴点M′的坐标为(5,3),∴FM′∥x轴,∴﹣x2+4x+5=3,解得,x1=,x2=,∴E1(,3),E2(,3),∴点E的坐标为(,3)或(,3);(3)存在,Q1(,),Q2(,),Q3(,2).设Q(m,﹣m2+4m+5),P(2,p),①当OP=PQ,∠OPQ=90°时,作PL⊥y轴于L,过Q作QK⊥x轴,交PL于K,∴∠LPO=90°﹣∠LOP=90°﹣KPQ,∠PLO=∠QKP=90°,∴∠LOP=∠KPQ,∵OP=PQ,∴△LOP≌△KPQ(AAS),∴LO=PK,LP=QK,∴,解得m1=,m2=(舍去),当m1=时,﹣m2+4m+5=,∴Q(,);②当QO=PQ,∠PQO=90°时,作PL⊥y轴于L,过Q作QK⊥x轴于T,交PL于K,同理可得△PKQ≌△QTO(AAS),∴QT=PK,TO=QK,∴,解得m1=,m2=(舍去),当m1=时,﹣m2+4m+5=,∴Q(,);③当QO=OP,∠POQ=90°时,作PL⊥y轴于L,过Q作QK⊥x轴于T,交PL于K,同理可得△OLP≌△QSO(AAS),∴SQ=OL,SO=LP,∴,解得m1=2+,m2=2﹣(舍去),当m1=2+时,﹣m2+4m+5=2,∴Q(,2);综上,Q1(,),Q2(,),Q3(,2).13.已知如图1,在以O为原点的平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,﹣1),连接AC,AO=2CO,直线l过点G(0,t)且平行于x轴,t<﹣1.(1)求抛物线对应的二次函数的解析式;(2)若D(﹣4,m)为抛物线y=x2+bx+c上一定点,点D到直线l的距离记为d,当d=DO时,求t的值.(3)如图2,若E(﹣4,m)为上述抛物线上一点,在抛物线上是否存在点F,使得△BEF是直角三角形,若存在求出点F的坐标,若不存在说明理由.解:(1)∵C(0,﹣1),∴y=x2+bx﹣1,又∵AO=2OC,∴点A坐标为(﹣2,0),代入得:1﹣2b﹣1=0,解得:b=0,∴解析式为:y=x2﹣1;(2)∵D(﹣4,m)为抛物线y=x2﹣1上一定点,∴m=×16﹣1=3,∴D(﹣4,3),∴OD==5,∴d=5,∴t=﹣(5﹣3)=﹣2;(3)点E(﹣4,m)在抛物线y=x2﹣1的上,∴m=3,∴E(﹣4,3),∵B(2,0),∴直线BE为y=﹣x+1,①如图1,当B点为直角顶点时,则BF⊥BE,∴直线BF的斜率为2,设直线BF的解析式为y=2x+n,把B(2,0)代入得2×2+n=0,∴n=﹣4,∴直线BF的解析式为y=2x﹣4,解得或,∴F(6,8);②当F点为直角顶点时,设BE的平行线y=﹣x+b与抛物线有且只有一个交点P,∴﹣x+b=x2﹣1,整理得x2+2x﹣4b﹣4=0,∴△=4+4(4b+4)=0,解得b=﹣,∴平行线为y=﹣﹣,∴x2+2x+1=0,解得x=﹣1,∴y=﹣,∴平行线与抛物线的交点P为(﹣1,﹣),∵B(2,0),E(﹣4,3),∴BE==3,∴BE的中点Q为(﹣1,),∴QP=+=<=BE,∴此种情况不存在,③当E点为直角顶点时,如图2,设点F(n,n2﹣1),而点E(﹣4,3),B(2,0),过点E作y轴的平行线交x轴于点N,交过点F与x轴的平行线于点M,则∠EBN=∠MEF,则tan∠EBN=tan∠MEF,即,∴,解得:n=﹣4(舍去)或12,故点F的坐标为(12,35);故在抛物线上存在点F,使得△BEF是直角三角形,点F的坐标为(6,8)或(12,35).14.如图①,抛物线y=ax2+bx+c与x轴相交于O、A两点,直线y=﹣x+3与y轴交于B点,与该抛物线交于A,D两点,已知点D横坐标为﹣1.(1)求这条抛物线的解析式;(2)如图①,在线段OA上有一动点H(不与O、A重合),过H作x轴的垂线分别交AB于P点,交抛物线于Q点,若x轴把△POQ分成两部分的面积之比为1:2,请求出H点的坐标;(3)如图②,在抛物线上是否存在点C,使△ABC为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.(1)解:y=﹣x+3,当x=0时,y=3,∴B(0,3),把x=﹣1代入y=﹣x+3得:y=4,∴D(﹣1,4),当y=0时,0=﹣x+3,∴x=3,∴A(3,0),∵抛物线过A(3,0),O(0,0),把D(﹣1,4)代入y=ax2+bx+c=a(x﹣0)(x﹣3)得:4=a(﹣1﹣0)(﹣1﹣3),∴a=1,∴y=(x﹣0)(x﹣3),即抛物线的解析式是y=x2﹣3x.(2)解:设H(x,0),则P(x,﹣x+3),Q(x,x2﹣3x),∴PH=﹣x+3,QH=3x﹣x2,∵x轴把△POQ分成两部分的面积之比为1:2,∴=或=2,即=或=2,解得:x1=2,x2=3(舍去),x3=3(舍去),x4=,∴H点的坐标是(2,0)或(,0).(3)解:分为三种情况:①若∠BAC=90°,设C(x,x2﹣3x),∵△AOB是等腰直角三角形,∴∠BAO=45°,∴∠OAC=45°,∴tan∠OAC=1,∴=1,解得:x1=1,x2=3(舍去),∴C(1,﹣2);②若∠ABC=90°时,∵∠OBA=45°,∴∠OBC=45°,设直线BC交于x轴于E,其解析式是y=kx+3,∴OE=OB=3,∴E(﹣3,0),代入得:0=﹣3k+3,∴k=1,∴y=x+3,解方程组得:,,∴C(2+,5+)或(2﹣,5﹣);③若∠ACB=90°时,设C(n,k),AC2+BC2=AB2,即(n﹣3)2+k2+n2+(k﹣3)2=18,n2﹣3n+k2﹣3k=0,∵k=n2﹣3n,代入求出k1=0,k2=2,∴n2﹣3n=0,n2﹣3n=2,解得:n1=0,n2=3(舍去),n3=,n4=,∴C(0,0)或(,2)或(,2),综合上述:存在,点C的坐标是(1,﹣2)或(2+,5+)或(2﹣,5﹣)或(0,0)或(,2)或(,2).15.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(1)求此函数的关系式;(2))在AC下方的抛物线上有一点N,过点N作直线l∥y轴,交AC与点M,当点N坐标为多少时,线段MN的长度最大?最大是多少?(3)在对称轴上有一点K,在抛物线上有一点L,若使A,B,K,L为顶点形成平行四边形,求出K,L点的坐标.(4)在y轴上是否存在一点E,使△ADE为直角三角形,若存在,直接写出点E的坐标;若不存在,说明理由.解:(1)∵抛物线y=x2+bx+c经过点A(﹣3,0),C(0,﹣3),∴将其分别代入抛物线解析式,得,解得.故此抛物线的函数表达式为:y=x2+2x﹣3;(2)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,﹣3)代入,得,解得,∴直线AC的解析式为y=﹣x﹣3,设N的坐标为(n,n2+2n﹣3),则M(n,﹣n﹣3),∴MN=﹣n﹣3﹣(n2+2n﹣3)=﹣n2﹣3n=﹣(n+)2+,把n=﹣代入抛物线得,N的坐标为(﹣,﹣),当N的坐标为(﹣,﹣),MN有最大值;(3)①当以AB为对角线时,根据平行四边形对角线互相平分,∴KL必过(﹣1,0),∴L必在抛物线上的顶点D处,∵y=x2+2x﹣3=(x+1)2﹣4,∴L(﹣1,﹣4),K(﹣1,4)②当以AB为边时,AB=KL=4,∵K在对称轴上x=﹣1,∴L的横坐标为3或﹣5,代入抛物线得L(﹣5,12)或L(3,12),此时K都为(﹣1,12),综上,K(﹣1,4),L(﹣1,﹣4)或K(﹣1,12),L(﹣5,12)或K(﹣1,12),L(3,12);(4)存在,∵A(﹣3,0),D(﹣1,﹣4),∴AD2=(﹣3+1)2+(0+4)2=20,设E(0,m),则AE2=(﹣3﹣0)2+(0﹣m)2=9+m2,DE2=(﹣1﹣0)2+(﹣4﹣m)2=17+m2+8m,①AE为斜边,由AE2=AD2+DE2得:9+m2=20+17+m2+8m,解得:m=,②DE为斜边,由DE2=AD2+AE2得:9+m2+20=17+m2+8m,解得:m=,③AD为斜边,由AD2=ED2+AE2得:20=17+m2+8m+9+m2,解得:m=﹣1或﹣3,∴点E的坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).16.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,请问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴,解得:.∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)存在,如图1,∵抛物线解析式为:y=﹣x2﹣2x+3,∴其对称轴为,∴设P点坐标为(﹣1,a),∴C(0,3),M(﹣1,0),PM2=a2,CM2=(﹣1)2+32,CP2=(﹣1)2+(3﹣a)2,分类讨论:(1)当PC=PM时,(﹣1)2+(3﹣a)2=a2,解得,∴P点坐标为:P1(﹣1,);(2)当MC=MP时,(﹣1)2+32=a2,解得,∴P点坐标为:或;(3)当CM=CP时,(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,a=0(舍),∴P点坐标为:P4(﹣1,6).综上所述存在符合条件的点P,其坐标为或或P(﹣1,6)或.(3)存在,Q(﹣1,2),理由如下:如图2,点C(0,3)关于对称轴x=﹣1的对称点C′的坐标是(﹣2,3),连接AC′,直线AC′与对称轴的交点即为点Q.设直线AC′函数关系式为:y=kx+t(k≠0).将点A(1,0),C′(﹣2,3)代入,得,解得,所以,直线AC′函数关系式为:y=﹣x+1.将x=﹣1代入,得y=2,即Q(﹣1,2).17.如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.解:(1)∵点C(3,1)在二次函数的图象上,∴x2+bx﹣=1,解得:b=﹣,∴二次函数的解析式为y=x2﹣x﹣y=x2﹣x﹣=(x2﹣x+﹣)﹣=(x﹣)2﹣(2)作CK⊥x轴,垂足为K.∵△ABC为等腰直角三角形,∴AB=AC.又∵∠BAC=90°,∴∠BAO+∠CAK=90°.又∵∠CAK+∠ACK=90°,∴∠BAO=∠ACK.在△BAO和△ACK中,∠BOA=∠AKC,∠BAO=∠ACK,AB=AC,∴△BAO≌△ACK.∴OA=CK=1,OB=AK=2.∴A(1,0),B(0,2).∴当点B平移到点D时,D(m,2),则2=m2﹣m﹣,解得m=﹣3(舍去)或m=.∴AB==.∴△ABC扫过区域的面积=S四边形ABDE+S△DEH=×2+××=9.5(3)当∠ABP=90°时,过点P作PG⊥y轴,垂足为G.∵△APB为等腰直角三角形,∴PB=AB,∠PBA=90°.∴∠PBG+∠BAO=90°.又∵∠PBG+∠BPG=90°,∴∠BAO=∠BPG.在△BPG和△ABO中,∠BOA=∠PGB,∠BAO=∠BPG,AB=PB,∴△BPG≌△ABO.∴PG=OB=2,AO=BG=1,∴P(﹣2,1).当x=﹣2时,y≠1,∴点P(﹣2,1)不在抛物线上.当∠PAB=90°,过点P作PF⊥x轴,垂足为F.同理可知:△PAF≌△ABO,∴FP=OA=1,AF=OB=2,∴P(﹣1,﹣1).当x=﹣1时,y=﹣1,∴点P(﹣1,﹣1)在抛物线上.18.如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)点N坐标为(0,2),点M在抛物线上,且∠NBM=45°,直接写出点M坐标;(4)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.解:(1)将点A(1,0)代入y=ax2+bx+4,得a+b+4=0,∵对称轴为直线x=,∴﹣=,∴b=﹣5a,∴a﹣5a+4=0,∴a=1,∴b=﹣5,∴y=x2﹣5x+4;(2)令x=0,则y=4,∴C(0,4),令y=0,则x2﹣5x+4=0,∴x=4或x=1,∴A(1,0),B(4,0),设直线BC的解析式为y=kx+d,∴,∴,∴y=﹣x+4,设P(t,﹣t+4),则Q(t,t2﹣5t+4),∴PQ=﹣t+4﹣(t2﹣5t+4)=﹣t2+4t=﹣(t﹣2)2+4,∴当t=2时,PQ的长度最大,∴P(2,2),Q(2,﹣2),∴PQ=4,OQ=2,∵CO=4,∴四边形OCPQ是平行四边形;(3)∵OB=OC=4,∴∠CBO=45°,∵∠NBM=45°,∴∠OBM=∠CBN,过点N作NF⊥BC于点F,∵N(0,2),C(0,4),∴CN=2,∴NF=CF=,∵B(4,0),∴OB=4,∴NB=2,∴BF=3,∴tan∠CBN=,∴tan∠OBG===,∴OG=,∴G(0,﹣),设直线OM的解析式为y=kx+b,∴,∴,∴y=x﹣,联立方程组,解得x=4(舍)或x=,∴M(,﹣);过B点作BK⊥BG交y轴于点K,此时∠NBK=45°,∴∠OKB=∠OBG,∵tan∠OBG====,∴OK=12,∴K(0,12),设直线KB的解析式为y=k1x+b1,∴,∴,∴y=﹣3x+12,联立方程组,解得x=4(舍)或x=﹣2,∴M(﹣2,18);综上所述:M点坐标为(﹣2,18)或(,﹣);(4)存在点F,使得△BEF为等腰三角形,理由如下:过点Q作x轴的垂线,过点Q作QN⊥y轴交于点N,过点E作y轴的垂线ME,∵QM∥y轴,∴∠ODQ=∠MQD,∵∠DQE=2∠ODQ,∴∠MQE=∠ODQ,∵C(0,4),D是OC的中点,∴D(0,2),∵Q(2,﹣2),∴tan∠ODQ==,∴=,设E(m,m2﹣5m+4),∴=,解得m=2(舍)或m=5,∴E(5,4),∴BE=,设F(0,y),①当BF=BE时,=,∴y=±1,∴F(0,1)或(0,﹣1);②当EF=BE时,=,此时y无解;③当BF=EF时,BE的中点T(,2),∴BF==,∴y=,∴F(0,),综上所述:点F的坐标为(0,1)或(0,﹣1)或(0,).19.如图,已知直线y=3x﹣3分别交x轴,y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)在抛物线的对称轴上求一点P,使△ABP的周长最小,并求出最小周长和P点的坐标;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.解:(1)在y=3x﹣3中,令y=0求得x=1,令x=0可得y=﹣3,∴A(1,0),B(0,﹣3),把A、B两点的坐标分别代入y=x2+bx+c得:,解得,∴抛物线解析式为y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的对称轴为x=﹣1,∵A、C关于对称轴对称,且A(1,0),∴MA=MC,C(﹣3,0),∴MB+MA=MB+MC,∴当B、M、C三点在同一条直线上时MB+MC最小,此时△ABM的周长最小,∴连接BC交对称轴于点M,则M即为满足条件的点,设直线BC的解析式为y=kx+m,∵直线BC过点B(0,﹣3),C(﹣3,0),∴,解得:,∴直线BC的解析式y=﹣x﹣3,当x=﹣1时,y=﹣2,∴M(﹣1,﹣2),∴存在点M使△ABM周长最短,其坐标为(﹣1,﹣2),最短周长为+=3+;(3)存在,理由如下:抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意:讨论:①当MA=AB时,∵OA=1,OB=3,∴AB=,=,解得:m=±,∴M1(﹣1,),M2(﹣1,﹣);②当MB=BA时,=,解得:M3=0,M4=﹣6,∴M3(﹣1,0),M4(﹣1,﹣6)(舍弃),③当MB=MA时,=,解得:m=﹣1,∴M5(﹣1,﹣1),答:共存在4个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M5(﹣1,﹣1)使△ABM为等腰三角形.20.如图,已知直线y=3x+3与x轴交于点A,与y轴交于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△ABP是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,说明理由.(3)在抛物线上求一点Q,使得△ACQ为以AC为底边的等腰三角形,并写出Q点的坐标;(4)除(3)中所求的Q点外,在抛物线上是否还存在其它的点Q使得△ACQ为等腰三角形?若存在,请求出一共有几个满足条件的点Q(要求简要说明理由,但不证明);若不存在这样的点Q,请说明理由.解:(1)令x=0得:y=3,∴B(0,3).令y=0得:3x+3=0,解得x=﹣1,∴A(﹣1,0).设抛物线的解析式为y=a(x+1)(x﹣3),将点B的坐标代入得:﹣3a=3,解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+3.(2)抛物线的对称轴方程为x=﹣=1.设点P的坐标为(1,a).当AB=AP时,=,整理得:10=4+a2,解得a=±∴P(1,)或(1,﹣).当BA=BP时,=,整理得:10=1+(3﹣a)2,解得:a=0或a=6(舍去),∴P(1,0).当AP=BP时,=,整理得:6a=6,解得a=1,∴P(1,1).综上所述:点P的坐标为P(1,)或(1,﹣)或P(1,0)或P(1,1).(3)当点Q在AC的垂直平分线上时,则QA=QC.由抛物线的对称性可知:此时点Q为抛物线的顶点.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴Q(1,4).(4)当QA=QC时,抛物线的顶点即为所求的点Q.如图所示:以A为圆心,以AC长为半径作⊙A,⊙A交抛物线于Q1、Q2、Q3,以C为圆心,AC长为半径作⊙C,交抛物线于点Q4、Q5、Q6.由圆的性质可知:△ACQ1、△ACQ2、△ACQ3、△ACQ4、△ACQ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年合肥驾驶员货运从业资格证考试题
- 2024年六盘水客运从业资格证到期换证考试
- 2024年南京客运运输从业资格证模拟考试题
- 超声医学之美V31209ByUpdated
- 解析《追风筝的人》的读书心得(31篇)
- 旅游政策与法规题库第十三章-旅游资源
- 北京市丰台区2016-2020年五年高考一模英语试题汇编-七选五专题
- 下载课件怎么下载
- 各个班组三级安全培训试题附参考答案(完整版)
- 宜兴城市形象宣传片解说词
- 全业务端到端-L2题库
- 药店110种常见疾病的症状及关联用药方案
- 三年级语文上册期中考试真题沪教版
- 精益生产评价打分表
- 史上最全的线材基础知识讲解
- 英国文学史名词英文解释
- 保健按摩师的礼仪礼节
- 东华禅寺义工报名表
- 三年级语文上册期中考试完整版沪教版
- 2021年秋新湘教版五年级上册科学 4.1燃烧 教案
- 四线田字格模板
评论
0/150
提交评论