




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版九年级上册数学期中考试试题一、选择题。(每小题只有一个正确答案)1.下列图案是中心对称图形的是()A.B.C.D.2.一元二次方程配方后得到的方程()A.B.C.D.3.把y=x2-2x+1写成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x-1)2+2C.y=(x-1)2+D.y=(x-2)2-34.若点P(-m,m-3)关于原点对称的点是第二象限内的点,则m满足()A.m>3 B.0<m≤3 C.m<0 D.m<0或m>35.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是A.3 B.2.5 C.2 D.16.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A. B. C. D.7.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①abc>0;②4ac﹣b2<0;③a+b+c>0;④3a<﹣c;⑤am2+bm≤a﹣b(m为任意实数).正确结论的个数是()A.4 B.3 C.2 D.18.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A. B. C.3 D.9.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣210.如图,半径为5的⊙A中,弦所对的圆心角分别是,.已知,,则弦的弦心距等于()A. B. C.4 D.3二、填空题11.若一元二次方程x2-6x-5=0的两根分别为x1,x2,则两根的和x1+x2=_____.12.二次函数y=-x2+4x-3的图象交x轴于A,B两点(A在B点左侧),交y轴于C点,则S△ABC=_____.13.如图,半圆O的半径为2,E是半圆上的一点,将E点对折到直径AB上(EE′⊥AB),当被折的圆弧与直径AB至少有一个交点时,则折痕CD的长度取值范围是_________________.14.如图,正方形AEFG与正方形ABCD的边长都为2,正方形AEFG绕正方形ABCD的顶点A旋转一周,在此旋转过程中,线段DF的长可取的整数值可以为______________.15.若某二次函数图象的形状与抛物线y=3x2相同,且顶点坐标为(0,-2),则它的表达式为________.16.一副学生三角板放在一个圈里恰好如图所示,顶点在圆圈外,其他几个顶点都在圆圈上,圆圈和交于点,已知cm,则这个圆圈上的弦长是_________三、解答题17.解方程:(1)x2-x-1=0(2)(x-2)2=2x-4(3)2x2-4x-9=0.(配方法)18.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.19.某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一个区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表的方法,求出乘积为负数的概率;(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).21.如图,BE是圆O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C,(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.22.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?23.小云在学习过程中遇到一个函数.下面是小云对其探究的过程,请补充完整:(1)当时,对于函数,即,当时,随的增大而,且;对于函数,当时,随的增大而,且;结合上述分析,进一步探究发现,对于函数,当时,随的增大而.(2)当时,对于函数,当时,与的几组对应值如下表:012301综合上表,进一步探究发现,当时,随的增大而增大.在平面直角坐标系中,画出当时的函数的图象.(3)过点(0,m)()作平行于轴的直线,结合(1)(2)的分析,解决问题:若直线与函数的图象有两个交点,则的最大值是.24.如图,直线分别与⊙O相切于点,且.求:(1)的度数;(2)⊙O的半径.25.(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为
.(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.
参考答案1.B【分析】由题意依据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进行分析判断即可.【详解】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:B.【点睛】本题主要考查中心对称图形定义,解题的关键是明确中心对称图形的定义以及找出对称中心.2.A【分析】首先移项变形成x2+8x=9的形式,然后方程两边同时加上一次项系数的一半的平方即可变形成左边是完全平方式,右边是常数的形式.【详解】∵x2+8x-9=0∴x2+8x=9∴x2+8x+16=9+16∴(x+4)2=25.故选A.考点:解一元二次方程-配方法3.A【分析】根据完全平方公式配方即可.【详解】解:y=x2-2x+1=(x2-4x)+1=(x2-4x+4-4)+1=(x-2)2-1故选A.【点睛】此题考查的是配方法,掌握完全平方公式是解决此题的关键.4.C【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(-m,m-3)关于原点O的对称点是P′(m,3-m),再由第二象限内的点横坐标为负数,纵坐标为正数,可得m的取值范围.【详解】解:点P(-m,m-3)关于原点O的对称点是P′(m,3-m),
∵P′(m,3-m),在第二象限,
∴,
∴m<0.
故选:C.【点睛】本题考查了关于原点对称的点的坐标,注意掌握:两个点关于原点对称时,它们的坐标符号相反.5.C【解析】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2,∴x=2,∴CD=2,故选C.点睛:本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.6.D【分析】根据概率的求法找准两点:①所有等可能的结果结果数;②符合条件要求的结果数,二者的比值即为事件发生的概率.【详解】∵转盘被等分成6部分,任意转动一次,共有6中等可能的结果;其中指针指向阴影部分的包含4种结果,∴指针指向阴影部分的概率为.故选D.7.A【分析】根据二次函数的图像与性质依次判断即可.【详解】解:由图象可得,a<0,b<0,c>0,∴abc>0,故①正确,该函数图象与x轴有两个交点,则b2﹣4ac>0,即4ac﹣b2<0,故②正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴当x=1时,y=a+b+c<0,故③错误,∵=﹣1,得b=2a,∴当x=1时,y=a+b+c=a+2a+c<0,得3a<﹣c,故④正确,∵当x=﹣1时,y=a﹣b+c取得最大值,∴am2+bm+c≤a﹣b+c,即am2+bm≤a﹣b(m为任意实数),故⑤正确,故选A.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知图像与各系数之间的关系.8.D【详解】试题分析:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D==.故选D.考点:旋转的性质;含30度角的直角三角形.9.D【详解】【分析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m与新图象有4个交点时,m的取值范围.【详解】如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2,故选D.【点睛】本题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法.10.D【分析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,再利用圆心角、弧、弦的关系得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=3.【详解】解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴,∴DE=BF=6,∵AH⊥BC,∴CH=BH,而CA=AF,∴AH为△CBF的中位线,∴AH=BF=3,故选:D.【点睛】本题考查了圆心角、弧、弦的关系.也考查了垂径定理和三角形中位线性质,解题的关键是熟练运用相应的定理.11.6【分析】根据一元二次方程根与系数的关系,,代入求值即可.【详解】的两根分别为x1,x2,,故答案为:6【点睛】本题考查一元二次方程根与系数的关系,牢记,理解用字母表示一元二次方程未知数系数的意义是解题关键.12.3【分析】根据题意,令x=0,y=0,分别求出对应的y、x的值,确定出A、B、C三点坐标,进而得出OC、AB的长度,利用三角形面积的公式进行计算,即可解决问题.【详解】解:依题意,令x=0,可得y=-3,令y=0,可得x=1或x=3,∴A(1,0),B(3,0),C(0,-3)∴AB=2,OC=3,∴S△ABC=AB·OC=×2×3=3.故答案为3.【点睛】本题考查了二次函数图象的应用,解题的关键是利用数形结合的思想,求出相关点的坐标.13.【分析】先找出折痕CD取最大值和最小值时,点E的位置,再利用折叠的性质、垂径定理、勾股定理求解即可得.【详解】由题意,有以下两个临界位置:(1)如图,当被折的圆弧与直径AB相切时,折痕CD的长度最短,此时点与圆心O重合,连接OD,由折叠的性质得:,,在中,,由垂径定理得:;(2)当CD和直径AB重合时,折痕CD的长度最长,此时,又要使被折的圆弧与直径AB至少有一个交点,;综上,折痕CD的长度取值范围是,故答案为:.【点睛】本题考查了折叠的性质、垂径定理、勾股定理等知识点,正确找出两个临界位置是解题关键.14.1或2或3或4【分析】如图连接AF,由题意可知AF-AD≤DF≤AD+AF,即2-2≤DF≤2+2,由此即可解决问题.【详解】解:如图连接AF.
易知AF=2,
∵AF-AD≤DF≤AD+AF,
∴2-2≤DF≤2+2,
∵DF是整数,
∴DF=1或2或3或4.
故答案为:1或2或3或4【点睛】本题考查了旋转变换、正方形的性质、三角形的三边关系等知识,解题的关键是学会用转化的思想思考问题,把最短问题转化为三边关系解决.15.y=3x2-2或y=-3x2-2【分析】根据二次函数的图象特点即可分类求解.【详解】二次函数的图象与抛物线y=3x2的形状相同,说明它们的二次项系数的绝对值相等,故本题有两种可能,即y=3x2-2或y=-3x2-2.故答案为y=3x2-2或y=-3x2-2.【点睛】此题主要考查二次函数的图象,解题的关键是熟知二次函数形状相同,二次项系数的绝对值相等.16.【分析】作于点E,连接BE,在中求出EF的长,在中求出CF的长,即可求出CE的长.【详解】解:如图,作于点E,连接BE,∵是等腰直角三角形,,∴,,,∴,AB是直径,∴,∵是含30°的三角板,∴,∴,,,∴在中,,,∴,在中,,,∴CF=4,∴故答案为:【点睛】本题考查了圆周角定理及勾股定理,能够把求CE长度问题转化直角三角形中的计算问题是解题的关键.17.(1);(2)x1=2,x2=4;(3)x1=1+,x2=1-【分析】(1)公式法求解即可(2)将等号右边移项,然后用因式分解法求解(3)先化二次项系数为1,然后移动常数项在等号右边,进行配方求解.【详解】解:(1))x2-x-1=0∴(2)(x-2)2=2x-4x1=2,x2=4(3)2x2-4x-9=0x1=1+,x2=1-【点睛】本题考查一元二次方程的解法,其中公式法,因式分解法,配方法是重点掌握内容,掌握各种解法是本题的关键。18.(1)见解析;(2)x=-2【详解】试题分析:直接利用对称轴公式代入求出即可;根据(1)中所求,再将x=4代入方程求出a,b的值,进而解方程得出即可.试题解析:(1)证明:∵对称轴是直线x=1=﹣,∴b=-2a∴2a+b=0;(2)∵ax2+bx﹣8=0的一个根为4,∴16a+4b﹣8=0,∵b=﹣2a,∴16a﹣8a﹣8=0,解得:a=1,则b=﹣2,∴a+bx﹣8=0为:﹣2x﹣8=0,则(x﹣4)(x+2)=0,解得:=4,=﹣2,故方程的另一个根为:﹣2.考点:二次函数的性质;二次函数图象与系数的关系;抛物线与x轴的交点19.(1);(2).【分析】(1)列表得出所有等可能的情况数,找出乘积为负数的情况数,即可求出所求的概率;(2)找出乘积为无理数的情况数,即可求出一等奖的概率.【详解】(1)列表如下:所有等可能的情况有12种,乘积结果为负数的情况有4种,则P(乘积结果为负数)=;(2)乘积是无理数的情况有2种,则P(乘积为无理数)=.20.(1)作图见试题解析,A1(2,﹣4);(2)作图见试题解析;(3).【分析】(1)找到点A、B、C的对应点A1、B1、C1的位置,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质,画出点A、C的对应点A2、C2,则可得到△A2BC2;(3)C点旋转到C2点所经过的路径是以B点为圆心,BC为半径,圆心角为90°的弧,然后根据弧长公式计算即可.【详解】解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)BC==,所以C点旋转到C2点所经过的路径长=.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.21.(1)∠C=40°;(2)⊙O的半径为2.【详解】【分析】(1)连接OA,利用切线的性质和角之间的关系解答即可;(2)根据直角三角形的性质解答即可.【详解】(1)如图,连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵,∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°﹣∠AOE=90°﹣50°=40°;(2)∵AB=AC,∴∠B=∠C,∵,∴∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴OA=OC,设⊙O的半径为r,∵CE=2,∴r=(r+2),解得:r=2,∴⊙O的半径为2.【点睛】本题考查了切线的性质、圆周角定理、含30度角的直角三角形的性质等,熟练掌握相关的性质与定理是解题的关键.22.(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【分析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y与x的函数关系式为y=kx+b.把(22,36)与(24,32)代入,得解得∴y=-2x+80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x-20)y=150,即(x-20)(-2x+80)=150.解得x1=25,x2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,∴当x=28时,w最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.23.(1)减小,减小,减小;(2)见解析;(3)【分析】(1)根据一次函数的性质,二次函数的性质分别进行判断,即可得到答案;(2)根据表格的数据,进行描点,连线,即可画出函数的图像;(3)根据函数图像和性质,当时,函数有最大值,代入计算即可得到答案.【详解】解:(1)根据题意,在函数中,∵,∴函数在中,随的增大而减小;∵,∴对称轴为:,∴在中,随的增大而减小;综合上述,在中,随的增大而减小;故答案为:减小,减小,减小;(2)根据表格描点,连成平滑的曲线,如图:(3)由(2)可知,当时,随的增大而增大,无最大值;由(1)可知在中,随的增大而减小;∴在中,有当时,,∴m的最大值为;故答案为:.【点睛】本题考查了二次函数的性质,一次函数的性质,以及函数的最值问题,解题的关键是熟练掌握题意,正确的作出函数图像,并求函数的最大值.24.(1)90°;(2)【分析】(1)根据切线的性质得到OB平分∠EBF,OC平分∠GCF,OF⊥BC,再根据平行线的性质得∠GCF+∠EBF=180°,则有∠OBC+∠OCB=90°,即∠BOC=90°;
(2)由勾股定理可求得BC的长,再根据三角形的面积,即可求得半径.【详解】解:(1)连接OF;
根据切线长定理得:BE=BF,CF=CG,
∠OBF=∠OBE,∠OCF=∠OCG;
∵AB∥CD
∴∠ABC+∠BCD=180°,
∴∠OBF+∠OCF=90°,
∴∠BOC=90°;
(2)∵OB=6cm,OC=8cm,
∴BC=10cm,故半径为:4.8.【点睛】此题主要是综合运用了切线长定理和切线的性质定理.由勾股定理可求得BC的长是关键.25
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业自动化在制造业的应用前景
- 工业遗址改造为环境艺术设计的实践
- 工业自动化技术对能源消耗的影响研究
- 工作中的高效化-从智慧家居看现代职场环境改造
- 工作效率与时间管理的心理学原理
- 工作满意度与组织绩效关系研究
- 工作空间的多元化与包容性设计
- 工程中的数学应用与思维训练
- 工厂自动化设备的选型与配置
- 工作更高效的团队设备应用指南
- 2025年GCP(药物临床试验质量管理规范)相关知识考试题与答案
- 2019-2020学年广东省中山市七年级下学期期末数学试卷-(含部分答案)
- 9.2解析三大诉讼 课件-高中政治统编版选择性必修二法律与生活
- 冬虫夏草的鉴别和栽培技术课件
- 口腔内科学练习题库(附答案)
- 中药材合作种植协议书5篇
- BSL实验室生物安全管理体系文件
- 幼儿园食源性疾病预防
- 压铸DFM报告说明书-内容及格式要求2024秋
- 行政管理学课件
- 广西版四年级美术(下)册教学计划
评论
0/150
提交评论