边缘计算演进-Evolving Edge Computing 2024_第1页
边缘计算演进-Evolving Edge Computing 2024_第2页
边缘计算演进-Evolving Edge Computing 2024_第3页
边缘计算演进-Evolving Edge Computing 2024_第4页
边缘计算演进-Evolving Edge Computing 2024_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

WHITEPAPER

EvolvingEdgeComputing

Contents

1WhyEvolveEdgeComputing?

2Vision

2.1EdgeVersusCloud

2.2Why‘CloudLike’inEdgeComputing?

2.3What’schanginginIoT/EdgeComputing?

2.4ChallengestoOvercome

2.5Summary

3.6Bibliography

WHITEPAPER2

1WhyEvolveEdgeComputing?

Edgecomputingisatermthathasbeeninuseforalongtime.Throughout

theindustry,therearemanyreferencestoedgeandmanypre-conceptions

aboutwhatthatmightmean.Theterm‘edge’istypicallyusedfordevicesthatexistontheedgeofanetworkandcancoveraplethoraofusecases,rangingfromtherouterinyourhouse,asmartvideocamerasurveyingaparkinglot,toacontrolsystemmanagingarobotonaproductionlineinasmartfactory.Itishardlysurprisingthenthat‘edge’isaconfusingtermwithsomanyuse

caseexamplestochoosefrom.

So,whatishappeningthatmeansthatArmiscallingforanevolutioninedgecomputing?Thispaperexaminestheconvergenceofseveralmarkettrends

thatpresentnewchallengesandopportunitiesinthisspaceandrequireustorethinkthewayforward.

Firstly,edgedevicesarebecomingconnectedtocloudservicessuchthattheyaregenerallylocatedclosetothesourceofdata.Inturn,theygenerateinsightthatfeedsnewdigitaltransformationservicesthatarehostedinthecloud.

Inthiscontext,wedefine‘thecloud’asbeingacentrallylocatedcomputeresource,typicallydatacenterbased,runninghigh-levelbusinessservices.

Theseservicesconsumeinsight(data)fromavastnumberofremotely

locatededgedevices.Asthiscloud-connectedtrendaccelerates,weseea

deepeningofthe‘relationship’betweencloudandedgedevices,suchthat

thecentrallylocatedservicesconsumingthedatahaveanever-increasing

amountofcontrolovertheedgedeviceswiththeaimofdrivingeverhigh

levelsofefficiencyinhowthesenetworksaredeployed.Althoughtheedgeisdistinctlydifferenttocloudcomputeresources,weexpecttoseedevelopersincreasinglybeingabletodevelopapplicationsatahighlevelthatare‘pushedout’totheedge,enablingdatainsightstoberefinedandtunedforvery

specificusecases.

WHITEPAPER3

Forthepurposesofthispaper,wefocuson‘frictionlessdevelopment’

asatermthatembraceshigh-levelworkloadswithhardwareabstraction,whileallowingthedevelopertoexploitthefullbenefitsoftheunderlyinghardware.

EvolvingEdgeComputing-EssentialIngredients

Developersneedtofocusonvalueadd,embracestandardsandmaximizere-use

‘Cloud-like’

Agileinnovationwithrapid

re-useacrossdevices.

Securityatscale

Trusteddevicesandtrusted

SWwithsecurelifecycleand

regulatorycompliance.

ModularSW

Complexmulti-vendorSWstacksthatworktocommonbestprectices.

Heterogeneity

Hardwareefficiencytuned

tospecificusecases.

Collaborative

Newmodelsof

collaborationtounlockthepotentialofedgecompute.

Eliminateneedlessfragmentation

Rightbalanceof

standardsandinnovation.

Eliminateunnecessarynon-differentiating

perplatformoverheadson-Arm.

Eachpartofthevaluechainfocuseson

value-addanddifferentiation.

FIG.1

EvolvingEdgeComputing–EssentialIngredients

Secondly,weseeahugeshiftinthemarkettodrivinginsightthrough

artificialintelligence.Typically,thismeanspushingAImodelsouttoedgedevicessotheycandelivertheinsightneededforbusiness-levelservices.

Finally,thesedevicesneedtobemanagedinasecureway.Asdescribedlaterinthepaper,emergingregulationsmandatesoftwaresecurityand

guaranteedupdates,makingitincreasinglyimportanttoconsiderthefullsecuritymodelofedgecomputing.Whendeployedatscale,edgedevicesareperformingacriticalroleinthedeliveryofhigh-valueservicesand

makingthemmorevulnerabletobadactormanipulation.

WHITEPAPER4

Secureidentityandsecurelifecyclemanagementarecriticalconsiderationsforabest-practiceedgecomputingapproach.

Inthecontextofthispaper,edgecomputingandsubsequently,edgeAI,

typicallyencompassescompute-richdevicesthatcanbeprogrammedin

high-levelabstractedlanguagesthatmakethemaccessibletoabroadrangeofdevelopers.FromanArmarchitectureperspective,thiscurrentlyrelies

onArmCortex-Aastheprincipalprocessingelement.Theabilitytosupportcompute-intensiveworkloadsandrichoperatingsystems,includingLinux,allowsproductsbasedonCortex-Abasedtoaddressthewidestpossible

setofusecases.

WecanexpectmanyedgeAIusecasestobepower-consumptionandcostsensitive,sothereisanongoingneedtobalancetheseaspectsacrosstheecosystem.Withthisinmind,wealsolookattheneedforheterogeneity,

i.e.,movingcompute-intenseworkloadstospecialisttypesofcomputethatofferamorebalancedapproach.

2Vision

Asuse-casecomplexityandthescaleofsmartconnectededgedevices

deploymentgrows,almostexponentially,sometechnologiesusedin

cloud-native

[1]

solutionsarebeingembracedinedgecomputing.Weseeafuturethatempowersthenextgenerationofapplicationdeveloperswithfrictionless‘cloud-like’developmentflowsthatfuelcollaboration,maximizere-use,acceleratetimetomarket,andreducethetotalcostofownership

onArm.TherapidadvancementofAIusecasesisexpectedtofuelmostofthegrowthintheedge(oredgeAI)market,withinferencebeingdeployedatscaleacrossmultiplearchitectures.

WHITEPAPER5

Thisrapidshiftinedgecomputerepresentsseveralchallenges,whichArmbelievesnecessitateanevolved,best-practiceapproachtoedgecomputingtoenabletheintelligentedgethrough:

—Re-useofsoftwarecomponents:Applicationsareakeydifferentiator.Theavailabilityandre-useofthecoreunderlyingstackiscriticalas

developerswishtofocusondifferentiationandmaximizere-useelsewhere.

—Embracingheterogeneitythroughabstractionofthecomplexityofdifferentiatedhardwarewithacommonsoftwareecosystem:

Devicesareuse-caseoptimizedbasedoncost,power,andperformance,drivinghybriddevicearchitectures(CPU/GPU/NPU/ISP,andsoon).

Thecommonsoftwareecosystemneedstoprovideanintegratedviewofthesystemwithlevelsofabstractionthatreducecomplexity.

—Genericabstracteddevelopmentflowsthatfuelcollaboration,speedtimetomarket,lowertotalcostofownershipandmaximizere-use:

Usecloud-nativederivedmethodologies,suchascontinuousintegration/continuousdeployment(CI/CD),todevelop,testapplications,anddeployefficientlytotargethardware.Developmentflowefficiencyiskeyinboththedevelopmentphase,aswellasinlong-tailmaintenanceoncethe

applicationisdeployed.

—Securityatscale:Thisisachievedthroughfrictionlesssecurelifecyclemanagementandregulatorycompliancetoreducetotalcostof

ownershipforthedeployedlifetimeofthedevice.

2.1EdgeVersusCloud

Beyondhardwareconstraints,thereareseveralkeydifferencesbetween

edge[

2

]andcloudasoperationalenvironments.Edgenodesanddevicesarepurpose-builtwithdifferentcostconstraints,resultinginmanydifferentconfigurationsdeployedovermultiplegenerationsofunderlyinghardwarecomponents.

WHITEPAPER6

Nodesdifferinhardwareresources,suchasCPUarchitecture,

micro-architecture,corecount,memory,storage,connectivity(latencyandbandwidth),peripherals,andaccelerators.Additionally,edgenodes

andgatewaysaremorelikelytorequiredynamicfrequencyscaling(eitherbecauseofbatteryconservationorthermalthrottling).Thishighdegreeofhardwareheterogeneityhasimplicationsondeployment,wheremultipleversionsofanapplicationmayberequiredtosupportdevicedifferences.

CloudNativeCloudEdge/IoTEmbedded

Highperformancecloudnativecompute

Optimisedcompute

High-performance,portableworkflowsUse-caseoptimizedefficiency,targetedworkflows

Deploy,

maintain

and

enhance

Deploy,

maintain

and

enhance

Deployandmaintaine.g.SW

updates

Deployandforget

Deploy,

maintain

and

enhance

Cloud-nativeworkflowscales

downtoedgeserver,hardwareabstractedandportable,butstill‘inthecloud.’

Embeddedsystemsscale-up,becomingsecure,connected,supportingsoftware

updatesandtakingonmoreofacloud-typedevelopmentflow.

FIG.2Organicgrowthandphysicalconstraints,suchaslocationanddifficult

CloudtransitiontoEdgeorcostlyreplacement,requiremultiplegenerationsofnodestocoexist,

leadingtodifferentSKUsofthedevicesupportedwiththesameapplicationsoftwareduringthesystem’slifetime.

Theedgeislikelytohaveahigherdatastorageandtransmissioncostcomparedtothedatacenter.Fewedgedevicesarelikelytohave

WHITEPAPER7

high-bandwidthnetworkconnections,constantconnectivityisnot

necessarilyagiven,andtransferringdatatoandfromthousandsofedgegatewaysisexpensive.Virtualmachineandcontainerimagesmagnify

thedatamovementcost,amountingtoclosetoacompletedistributiondownloadperapplication,duetoexistingpackaging.

Whilelayeredcontainerimagesareintendedtoreducethisoverhead,

third-partyapplicationpackagingmakesunderlyinglayerre-useunlikely.

Forexample,Armdevelopedaprototypehealthcareapplicationwith

machinelearning,whichused17Dockerimages,occupyingabout2.3GBofstorage.Deployingthisapplicationtothousandsofnodesovermeteredcellularnetworkingwouldnothavebeenpractical.Forthisreason,aswellasthesomewhatmoreconstrainedcomputecapability,wedonotseea

pure‘cloud-native’deploymenttoedgecomputingdevices,butrathera

frictionless‘cloud-like’modelwhichisaimedatdeliveringcloudbenefits,suchasportabilityandabstraction,inamorehardware-constrained

environment.

2.2Why‘CloudLike’inEdgeComputing?

FIG.3

BenefitsofCloudNative

Theefficienciesresultingfromminimizingtheoperationalburdenof

developers,administrators,andusersincloudcomputinghaveledtoothersegmentsevaluatingtheuseoftechnologiesoriginatingfromthecloudinotherenvironments.

WHITEPAPER8

Thedriverbehindthismovementisbasedonthelawofeconomics,namelythatthecloud-nativemodelofabstractionhasbeenshowntoaccelerate

timetomarketandsavecosts.Continuousdevelopment[

1

]isamajorcomponentofachievingafastertimetomarket.Theseadvantagesarerootedinseveralcorepropertiesofcloud-nativetechnologies:

—Portable,hardwareabstracted.

—Consistencyacrossanyinstallation/deployment.

—Timelyupdateswithoutcomplexre-integrationoverheads.

—Speedtimetomarketandmaximizere-use.—Fastapplicationdevelopmenttimes.

—Removeunnecessaryindustryfragmentationtoeliminatesiloedperplatformcosts.

2.3What’sChanginginEdgeComputing?

Digitaltransformationacrossindustriescontinuesatpace,bringingwithitnewinnovativebusinessservicesandnever-beforerealizedefficiencies.

FrombuildingthenextwaveofGigaFactoriestolow-carbon,energy-efficientcities,andtheelectrificationoftransport,acommonthemeunderliesitall—datainsightatascalenever-beforerealized.

Traditionalviewsofdatainsightarebuiltaroundadatacenter‘cloudcentric’model.Inthisscenario,sensordataissharedwiththecloud,inturnderivinginsightatscalethroughtechniquessuchasAI,todeliverthedesired

businessandefficiencyoutcomes.Thechallengecomeswithscaleandthesheernumberofconnecteddevices,andcorrespondingcomputedrives

theneedtoputprocessingclosetothesourceofthedata.Factorssuchaslatency,powerconsumption,cost,privacy,andconnectivity,alldrivethe

needtodeliverever-moresophisticatededgecomputing,ratherthansimplypushingdatatoremotecloud-basedserver.

WHITEPAPER9

Aswellasfrictionlesscomputewhereitisneeded,otherfactorsare

requiredtomeetthescaleanddemandofedgeAIgrowthoverthenextfewdecades.

Scalingdatainsightandvalue:Simplyconnectingdevicestothe

cloudbringsneitherscale,noroperationalefficiency.Traditionalcloud

datacentersdelivergenericcomputeforusebybusiness-levelapplications.Conversely,edgedevicesformthe‘real-worldinterface’anddelivermassiveinsightatscaleintothosecloud-basedservicesplatforms.Howinsight

isenabledattheedgeandhowtheseconnecteddevicesaresecurelymanagedbecomesacriticalsuccessfactorinscalingnewapplicationsandservices.

Securityatscale:Thereisgrowingregulationaroundthemanagementofelectronicdataandproducts.TheEuropeanCyberResilienceAct,

theUKProductSecurityandTelecommunicationsInfrastructureAct

andtheEuropeanRenewableEnergyDirectiveareprimeexamples.

WithsimilarlegislationprogressingintheUS,theregulatorylandscapecouldposeariskoffinancialpenaltiesandlostreputationforthosewhofailtomanagethesecurityofdigitalhardwareandsoftwareadequatelyacrossdevicelifecycles.Trustthereforebecomesasignificantfactorin

enablingscale.Edgedevicesdonotbenefitfrombeinginatraditionaldatacentersettingandareinstalledwherevertheyareneeded.

Unliketraditionalenterprisedatacentermodelswhereserversaredeployedinsecurelocationswithhighlymanagedsecurity,inedgedeployments,

weseeverydifferentdeploymentandthreatmodels.Edgedevicesmust

bedeployedinawidevarietyoflocations,withhighlyvariablesecurity

threats,e.g.,publiclylocated,susceptibletophysicalattack,connectingviapublicnetworks,tonamejustafew.Establishingtherightlevelofsecurityandtrustforedgedevicesiscriticaltoscaleapplicationsandrealizethe

businessbenefits.

WHITEPAPER10

Operationalefficiency:Aswescaleoutedgecompute,operational

efficiencybecomesakeyconsiderationwhenconsideringtotalcostof

ownership.Wecanthinkaboutthisintwoways:Firstly,thedevelopmentcosttocreatetheapplicationorservice,andsecondly,theoperationalorrunningcostsoncetheserviceisdeployed.Sinceedgecomputedevicestypicallyhavealonglifetime(5to10years,orlonger)thetotalcostof

ownershipbecomesacriticalconsideration.Thecostsincurredtooperateadeviceincludefactorssuchaspowerconsumption(linkedtorunning

costsandcarbonefficiency),aswellasdevicemaintenancecosts

relatedtomanagingsoftwareupdatesandoverallproductlifecycle.Asthedeploymentofdevicesscalesandusecasecomplexitygrows,devicevendorsandserviceprovidersincreasinglylooktooptimize

operationalefficiency.

Agileinnovation:Ourtraditionalviewofcloudcomputeisbuiltaroundagiledevelopment.Thisdeliverstremendousefficiencybothinterms

ofcloudaccessibilitytoavastnumberofdevelopersviaconsistentand

hardwareabstracteddevelopmentflows,andanagilemindsetinproductdevelopment.Asusecasesbecomemorecomplex,developersare

lookingtoembracethebenefitsof‘cloud-like’innovationinedgeusecases.Examplesincludeabstractinghardwaredifferencesasmuchaspossible

andsupportinganagiledevelopmentflowthatfacilitatesrapidinnovation,fastvirtualprototypingandcontinuousdevelopmentandimprovement

(CI/CDflows).

2.4ChallengestoOvercome

Aswehaveseen,thedemandforedgecomputeisrelentless,butsotoo

istheneedforefficiencyatalllevelsifwearetorealizethevisionatscale.TraditionalIoT-connecteddevicesthatweseetodaygosomewaytosolvingthesechallenges,butastepchangeinhowedgedevicesareenabledmust

WHITEPAPER11

happenacrossallindustries.Wecansummarizethekeychallengesasfollows:

Developa‘cloud-like’mindsetattheedge:Thetraditionaldatacenter

modelof‘writeonceandrunanywhere’doesnotmapdirectlytoedge

devicesforpracticalreasons,howeverelementsofthatmodelarecriticalforaneffectiveedgecomputingevolution.Edgedevicestendtobe

applicationspecific(e.g.asmartcamera)butmustembraceelements

offrictionlessdevelopmentforspecificbenefits.Aswethinkaboutedgecomputingasanextensionofthedatacenter,weneedawholenew

mindsetintermsofhowaccessibletheseedgedevicesaretodevelopers,andhowtheysupportagiledevelopment,virtualprototyping,and

continuousimprovements.Todeliverthisvisionalsorequiresasignificantmindsetshiftfortraditionalembeddeddevelopers.Goneisthetraditional

‘linear’developmentflowofspecifying,implementing,testing,and

deployingapplications.Instead,weshifttoCI/CD/deliveryflowtospeed

timetomarket,maximizesoftwarere-useandultimatelyreducecost.

Todothis,themarketmustbuildcommonabstractedprogrammingmodelstoopentheaccessibilityofedgedevicestodevelopersacrossplatforms,

abstractingcomplexityandlimitinghardwaredependenciesexclusivelytowheretheseaddvalue,suchasforperformanceandpoweroptimization.

Securityandprivacyatscale:Abedrockofscalingthecloudouttothe

edgeisensuringrobustsecurityandprivacy.Buildingdevicesthathave

atrustedandconsistentapproachtosecurityiscriticalfortheirlifecycle

managementandensuringtrustaroundthedevice,connection,software

lifecycle,data,andservices.Withsoftwarestacksbecomingincreasingly

complexandmultivendor,weseegreateraneedforcomposablesoftware,wherebyeachpartyownsonlytheportionofsoftwarethattheycareabout.Withinthismodel,eachsoftwarecomponentessentiallyhasitsownsecurelifecycle.Underpinningthisistheneedforconsistentplatformsecurity

capabilities,suchassecureboot,secureupdates,securestorage,

WHITEPAPER12

andtrustedcrypto.Howeachofthesoftwarecomponentscanaccessthesesecureplatformservicestomanagetheirlifecycleiscritical.

Eliminateneedlessfragmentation:Needlessfragmentationholdsback

innovationandslowsthepaceofadoptionatscale.Itisthereforeessentialtoseekoutcommonalitythatremovesneedlessnon-differentiationsothesupplychaincanfocusonlyonthedifferentiationthataddsvaluetotheirbusinessandthemarket.Anobsessiveattentiontoefficiencyisneeded

bothinthedevelopmentofthedevice,aswellastheoperationalcosts.

Amodularapproachtosoftwaredeployment:Fragmentationchallenges

extendtosoftwareasweconsidertheincreasinglycomplexusecasesfor

edgedevices.Itiscommonplaceformultivendorsoftwarestackstorun

onanedgedevicewithmanythird-partycomponentsneedingtocome

togetherandinteroperate.Increasingly,end-marketdeploymentscareaboutwhatsoftwareisrunningonedgedevices.Fleetmanagers,forexample,

wanttoknowwhatoperatingsystemsaredeployed,whatsecuritypatchesarepushedout,andwheredifferentsoftwareassetsarecomingfrom.

Thedesireforchoice,coupledwithgrowingcomplexity,isdrivingtheneedformodular,interoperablesoftwarethatcanbemaintainedthroughoutitsdeployedlifetime.

Balancestandardizationanddifferentiation:Themarketmustembracestandardsandcommonalitywherenecessarytospeedtimetomarket,

reducetotalcostofownership,andeliminateneedlessfragmentation.

CollaboratingonArmcanbringtherightlevelofstandardization,while

allowinghardwareinnovationanddifferentiationtothrive.Thereisno

single‘recipe’foredgedevicesfromanArmplatformpointofview.

Instead,weconsider‘thesetofhardwareandsoftwareinterfacesneededtominimizethecostofbooting,running,andmaintainingoperatingsystemsandothersystemsoftwarethroughthelifetimeofthedevice’.

WHITEPAPER13

Benefitsofthisapproachinclude:

—Reducestime,cost,andeffortfromgettingsoftwaretoinstallandworkfordevicelifetimes.

—Removesnon-differentiatingcostfromtheecosystem.

—Allowstheecosystemtoinvestmoretimeandmoneyonworkthataddsvalue.

Today,initiativeslike

PARSEC

forstandardizedhardware-abstractedsecurityservicesarebecomingessential,asisaconsistentapproachtosecurity,whichisprovidedby

PSACertified

.Plus,through

ArmSystemReady,welookathowoperatingsystemsaresupportedonedgedevicesasacriticalfactor,alongsidetheneedtoofferandmaintainoperatingsystemdistributionsondevicesfortheircompletelifecycle,

whileeliminatingper-platformportingcosts.

HeterogeneityinedgeAI:Whenthinkingaboutcloudnative,

weimaginecontainerizedcomputeworkloadsthatcanruninafullyportablemannerinclouddatacenters.Asweestablishedearlyinthis

document,edgecomputingtendstobeapplicationspecificandoptimizedforcertainworkloadsandpower/performancebudgets.Overthelast

fewyears,weareseeingadeepeningtrendfor‘acceleratedcompute,’wherebyhardwareaccelerationisappliedtocommonandcompute-intensiveworkloads.Acceleratedcomputetakesmanyformsbut

principallyfallsintotwoareas:

01In-lineaccelerationthatoccursaspartoftheCPUoperation(e.g.,ArmScalableMatrixExtensions).

02Offloadacceleration(e.g.hardwarethatsitsalongsidetheCPU,

suchasanNPU,bprovidingheterogeneityintheprogrammingmodel).

WHITEPAPER14

Acceleratedcomputeisusedtoimproveperformance,reducepower

consumptionforspecificworkloads,orsometimesboth.Examininghow

developerexperiencesscaleacrossheterogeneousplatformsisessentialtoavoidneedlessfragmentationandsiloeddevelopmentsbecoming

deeplyentwinedtospecifichardwarevariants.Aswelooktowardsthe

evolutionofedgedevicesasoutlinedinthispaper,thepartialdecouplingofhardwareandapplicationasatrendmovesustowardan‘app-like’

modelthatfa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论