




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WHITEPAPER
EvolvingEdgeComputing
Contents
1WhyEvolveEdgeComputing?
2Vision
2.1EdgeVersusCloud
2.2Why‘CloudLike’inEdgeComputing?
2.3What’schanginginIoT/EdgeComputing?
2.4ChallengestoOvercome
2.5Summary
3.6Bibliography
WHITEPAPER2
1WhyEvolveEdgeComputing?
Edgecomputingisatermthathasbeeninuseforalongtime.Throughout
theindustry,therearemanyreferencestoedgeandmanypre-conceptions
aboutwhatthatmightmean.Theterm‘edge’istypicallyusedfordevicesthatexistontheedgeofanetworkandcancoveraplethoraofusecases,rangingfromtherouterinyourhouse,asmartvideocamerasurveyingaparkinglot,toacontrolsystemmanagingarobotonaproductionlineinasmartfactory.Itishardlysurprisingthenthat‘edge’isaconfusingtermwithsomanyuse
caseexamplestochoosefrom.
So,whatishappeningthatmeansthatArmiscallingforanevolutioninedgecomputing?Thispaperexaminestheconvergenceofseveralmarkettrends
thatpresentnewchallengesandopportunitiesinthisspaceandrequireustorethinkthewayforward.
Firstly,edgedevicesarebecomingconnectedtocloudservicessuchthattheyaregenerallylocatedclosetothesourceofdata.Inturn,theygenerateinsightthatfeedsnewdigitaltransformationservicesthatarehostedinthecloud.
Inthiscontext,wedefine‘thecloud’asbeingacentrallylocatedcomputeresource,typicallydatacenterbased,runninghigh-levelbusinessservices.
Theseservicesconsumeinsight(data)fromavastnumberofremotely
locatededgedevices.Asthiscloud-connectedtrendaccelerates,weseea
deepeningofthe‘relationship’betweencloudandedgedevices,suchthat
thecentrallylocatedservicesconsumingthedatahaveanever-increasing
amountofcontrolovertheedgedeviceswiththeaimofdrivingeverhigh
levelsofefficiencyinhowthesenetworksaredeployed.Althoughtheedgeisdistinctlydifferenttocloudcomputeresources,weexpecttoseedevelopersincreasinglybeingabletodevelopapplicationsatahighlevelthatare‘pushedout’totheedge,enablingdatainsightstoberefinedandtunedforvery
specificusecases.
WHITEPAPER3
Forthepurposesofthispaper,wefocuson‘frictionlessdevelopment’
asatermthatembraceshigh-levelworkloadswithhardwareabstraction,whileallowingthedevelopertoexploitthefullbenefitsoftheunderlyinghardware.
EvolvingEdgeComputing-EssentialIngredients
Developersneedtofocusonvalueadd,embracestandardsandmaximizere-use
‘Cloud-like’
Agileinnovationwithrapid
re-useacrossdevices.
Securityatscale
Trusteddevicesandtrusted
SWwithsecurelifecycleand
regulatorycompliance.
ModularSW
Complexmulti-vendorSWstacksthatworktocommonbestprectices.
Heterogeneity
Hardwareefficiencytuned
tospecificusecases.
Collaborative
Newmodelsof
collaborationtounlockthepotentialofedgecompute.
Eliminateneedlessfragmentation
Rightbalanceof
standardsandinnovation.
Eliminateunnecessarynon-differentiating
perplatformoverheadson-Arm.
Eachpartofthevaluechainfocuseson
value-addanddifferentiation.
FIG.1
EvolvingEdgeComputing–EssentialIngredients
Secondly,weseeahugeshiftinthemarkettodrivinginsightthrough
artificialintelligence.Typically,thismeanspushingAImodelsouttoedgedevicessotheycandelivertheinsightneededforbusiness-levelservices.
Finally,thesedevicesneedtobemanagedinasecureway.Asdescribedlaterinthepaper,emergingregulationsmandatesoftwaresecurityand
guaranteedupdates,makingitincreasinglyimportanttoconsiderthefullsecuritymodelofedgecomputing.Whendeployedatscale,edgedevicesareperformingacriticalroleinthedeliveryofhigh-valueservicesand
makingthemmorevulnerabletobadactormanipulation.
WHITEPAPER4
Secureidentityandsecurelifecyclemanagementarecriticalconsiderationsforabest-practiceedgecomputingapproach.
Inthecontextofthispaper,edgecomputingandsubsequently,edgeAI,
typicallyencompassescompute-richdevicesthatcanbeprogrammedin
high-levelabstractedlanguagesthatmakethemaccessibletoabroadrangeofdevelopers.FromanArmarchitectureperspective,thiscurrentlyrelies
onArmCortex-Aastheprincipalprocessingelement.Theabilitytosupportcompute-intensiveworkloadsandrichoperatingsystems,includingLinux,allowsproductsbasedonCortex-Abasedtoaddressthewidestpossible
setofusecases.
WecanexpectmanyedgeAIusecasestobepower-consumptionandcostsensitive,sothereisanongoingneedtobalancetheseaspectsacrosstheecosystem.Withthisinmind,wealsolookattheneedforheterogeneity,
i.e.,movingcompute-intenseworkloadstospecialisttypesofcomputethatofferamorebalancedapproach.
2Vision
Asuse-casecomplexityandthescaleofsmartconnectededgedevices
deploymentgrows,almostexponentially,sometechnologiesusedin
cloud-native
[1]
solutionsarebeingembracedinedgecomputing.Weseeafuturethatempowersthenextgenerationofapplicationdeveloperswithfrictionless‘cloud-like’developmentflowsthatfuelcollaboration,maximizere-use,acceleratetimetomarket,andreducethetotalcostofownership
onArm.TherapidadvancementofAIusecasesisexpectedtofuelmostofthegrowthintheedge(oredgeAI)market,withinferencebeingdeployedatscaleacrossmultiplearchitectures.
WHITEPAPER5
Thisrapidshiftinedgecomputerepresentsseveralchallenges,whichArmbelievesnecessitateanevolved,best-practiceapproachtoedgecomputingtoenabletheintelligentedgethrough:
—Re-useofsoftwarecomponents:Applicationsareakeydifferentiator.Theavailabilityandre-useofthecoreunderlyingstackiscriticalas
developerswishtofocusondifferentiationandmaximizere-useelsewhere.
—Embracingheterogeneitythroughabstractionofthecomplexityofdifferentiatedhardwarewithacommonsoftwareecosystem:
Devicesareuse-caseoptimizedbasedoncost,power,andperformance,drivinghybriddevicearchitectures(CPU/GPU/NPU/ISP,andsoon).
Thecommonsoftwareecosystemneedstoprovideanintegratedviewofthesystemwithlevelsofabstractionthatreducecomplexity.
—Genericabstracteddevelopmentflowsthatfuelcollaboration,speedtimetomarket,lowertotalcostofownershipandmaximizere-use:
Usecloud-nativederivedmethodologies,suchascontinuousintegration/continuousdeployment(CI/CD),todevelop,testapplications,anddeployefficientlytotargethardware.Developmentflowefficiencyiskeyinboththedevelopmentphase,aswellasinlong-tailmaintenanceoncethe
applicationisdeployed.
—Securityatscale:Thisisachievedthroughfrictionlesssecurelifecyclemanagementandregulatorycompliancetoreducetotalcostof
ownershipforthedeployedlifetimeofthedevice.
2.1EdgeVersusCloud
Beyondhardwareconstraints,thereareseveralkeydifferencesbetween
edge[
2
]andcloudasoperationalenvironments.Edgenodesanddevicesarepurpose-builtwithdifferentcostconstraints,resultinginmanydifferentconfigurationsdeployedovermultiplegenerationsofunderlyinghardwarecomponents.
WHITEPAPER6
Nodesdifferinhardwareresources,suchasCPUarchitecture,
micro-architecture,corecount,memory,storage,connectivity(latencyandbandwidth),peripherals,andaccelerators.Additionally,edgenodes
andgatewaysaremorelikelytorequiredynamicfrequencyscaling(eitherbecauseofbatteryconservationorthermalthrottling).Thishighdegreeofhardwareheterogeneityhasimplicationsondeployment,wheremultipleversionsofanapplicationmayberequiredtosupportdevicedifferences.
CloudNativeCloudEdge/IoTEmbedded
Highperformancecloudnativecompute
Optimisedcompute
High-performance,portableworkflowsUse-caseoptimizedefficiency,targetedworkflows
Deploy,
maintain
and
enhance
Deploy,
maintain
and
enhance
Deployandmaintaine.g.SW
updates
Deployandforget
Deploy,
maintain
and
enhance
Cloud-nativeworkflowscales
downtoedgeserver,hardwareabstractedandportable,butstill‘inthecloud.’
Embeddedsystemsscale-up,becomingsecure,connected,supportingsoftware
updatesandtakingonmoreofacloud-typedevelopmentflow.
FIG.2Organicgrowthandphysicalconstraints,suchaslocationanddifficult
CloudtransitiontoEdgeorcostlyreplacement,requiremultiplegenerationsofnodestocoexist,
leadingtodifferentSKUsofthedevicesupportedwiththesameapplicationsoftwareduringthesystem’slifetime.
Theedgeislikelytohaveahigherdatastorageandtransmissioncostcomparedtothedatacenter.Fewedgedevicesarelikelytohave
WHITEPAPER7
high-bandwidthnetworkconnections,constantconnectivityisnot
necessarilyagiven,andtransferringdatatoandfromthousandsofedgegatewaysisexpensive.Virtualmachineandcontainerimagesmagnify
thedatamovementcost,amountingtoclosetoacompletedistributiondownloadperapplication,duetoexistingpackaging.
Whilelayeredcontainerimagesareintendedtoreducethisoverhead,
third-partyapplicationpackagingmakesunderlyinglayerre-useunlikely.
Forexample,Armdevelopedaprototypehealthcareapplicationwith
machinelearning,whichused17Dockerimages,occupyingabout2.3GBofstorage.Deployingthisapplicationtothousandsofnodesovermeteredcellularnetworkingwouldnothavebeenpractical.Forthisreason,aswellasthesomewhatmoreconstrainedcomputecapability,wedonotseea
pure‘cloud-native’deploymenttoedgecomputingdevices,butrathera
frictionless‘cloud-like’modelwhichisaimedatdeliveringcloudbenefits,suchasportabilityandabstraction,inamorehardware-constrained
environment.
2.2Why‘CloudLike’inEdgeComputing?
FIG.3
BenefitsofCloudNative
Theefficienciesresultingfromminimizingtheoperationalburdenof
developers,administrators,andusersincloudcomputinghaveledtoothersegmentsevaluatingtheuseoftechnologiesoriginatingfromthecloudinotherenvironments.
WHITEPAPER8
Thedriverbehindthismovementisbasedonthelawofeconomics,namelythatthecloud-nativemodelofabstractionhasbeenshowntoaccelerate
timetomarketandsavecosts.Continuousdevelopment[
1
]isamajorcomponentofachievingafastertimetomarket.Theseadvantagesarerootedinseveralcorepropertiesofcloud-nativetechnologies:
—Portable,hardwareabstracted.
—Consistencyacrossanyinstallation/deployment.
—Timelyupdateswithoutcomplexre-integrationoverheads.
—Speedtimetomarketandmaximizere-use.—Fastapplicationdevelopmenttimes.
—Removeunnecessaryindustryfragmentationtoeliminatesiloedperplatformcosts.
2.3What’sChanginginEdgeComputing?
Digitaltransformationacrossindustriescontinuesatpace,bringingwithitnewinnovativebusinessservicesandnever-beforerealizedefficiencies.
FrombuildingthenextwaveofGigaFactoriestolow-carbon,energy-efficientcities,andtheelectrificationoftransport,acommonthemeunderliesitall—datainsightatascalenever-beforerealized.
Traditionalviewsofdatainsightarebuiltaroundadatacenter‘cloudcentric’model.Inthisscenario,sensordataissharedwiththecloud,inturnderivinginsightatscalethroughtechniquessuchasAI,todeliverthedesired
businessandefficiencyoutcomes.Thechallengecomeswithscaleandthesheernumberofconnecteddevices,andcorrespondingcomputedrives
theneedtoputprocessingclosetothesourceofthedata.Factorssuchaslatency,powerconsumption,cost,privacy,andconnectivity,alldrivethe
needtodeliverever-moresophisticatededgecomputing,ratherthansimplypushingdatatoremotecloud-basedserver.
WHITEPAPER9
Aswellasfrictionlesscomputewhereitisneeded,otherfactorsare
requiredtomeetthescaleanddemandofedgeAIgrowthoverthenextfewdecades.
Scalingdatainsightandvalue:Simplyconnectingdevicestothe
cloudbringsneitherscale,noroperationalefficiency.Traditionalcloud
datacentersdelivergenericcomputeforusebybusiness-levelapplications.Conversely,edgedevicesformthe‘real-worldinterface’anddelivermassiveinsightatscaleintothosecloud-basedservicesplatforms.Howinsight
isenabledattheedgeandhowtheseconnecteddevicesaresecurelymanagedbecomesacriticalsuccessfactorinscalingnewapplicationsandservices.
Securityatscale:Thereisgrowingregulationaroundthemanagementofelectronicdataandproducts.TheEuropeanCyberResilienceAct,
theUKProductSecurityandTelecommunicationsInfrastructureAct
andtheEuropeanRenewableEnergyDirectiveareprimeexamples.
WithsimilarlegislationprogressingintheUS,theregulatorylandscapecouldposeariskoffinancialpenaltiesandlostreputationforthosewhofailtomanagethesecurityofdigitalhardwareandsoftwareadequatelyacrossdevicelifecycles.Trustthereforebecomesasignificantfactorin
enablingscale.Edgedevicesdonotbenefitfrombeinginatraditionaldatacentersettingandareinstalledwherevertheyareneeded.
Unliketraditionalenterprisedatacentermodelswhereserversaredeployedinsecurelocationswithhighlymanagedsecurity,inedgedeployments,
weseeverydifferentdeploymentandthreatmodels.Edgedevicesmust
bedeployedinawidevarietyoflocations,withhighlyvariablesecurity
threats,e.g.,publiclylocated,susceptibletophysicalattack,connectingviapublicnetworks,tonamejustafew.Establishingtherightlevelofsecurityandtrustforedgedevicesiscriticaltoscaleapplicationsandrealizethe
businessbenefits.
WHITEPAPER10
Operationalefficiency:Aswescaleoutedgecompute,operational
efficiencybecomesakeyconsiderationwhenconsideringtotalcostof
ownership.Wecanthinkaboutthisintwoways:Firstly,thedevelopmentcosttocreatetheapplicationorservice,andsecondly,theoperationalorrunningcostsoncetheserviceisdeployed.Sinceedgecomputedevicestypicallyhavealonglifetime(5to10years,orlonger)thetotalcostof
ownershipbecomesacriticalconsideration.Thecostsincurredtooperateadeviceincludefactorssuchaspowerconsumption(linkedtorunning
costsandcarbonefficiency),aswellasdevicemaintenancecosts
relatedtomanagingsoftwareupdatesandoverallproductlifecycle.Asthedeploymentofdevicesscalesandusecasecomplexitygrows,devicevendorsandserviceprovidersincreasinglylooktooptimize
operationalefficiency.
Agileinnovation:Ourtraditionalviewofcloudcomputeisbuiltaroundagiledevelopment.Thisdeliverstremendousefficiencybothinterms
ofcloudaccessibilitytoavastnumberofdevelopersviaconsistentand
hardwareabstracteddevelopmentflows,andanagilemindsetinproductdevelopment.Asusecasesbecomemorecomplex,developersare
lookingtoembracethebenefitsof‘cloud-like’innovationinedgeusecases.Examplesincludeabstractinghardwaredifferencesasmuchaspossible
andsupportinganagiledevelopmentflowthatfacilitatesrapidinnovation,fastvirtualprototypingandcontinuousdevelopmentandimprovement
(CI/CDflows).
2.4ChallengestoOvercome
Aswehaveseen,thedemandforedgecomputeisrelentless,butsotoo
istheneedforefficiencyatalllevelsifwearetorealizethevisionatscale.TraditionalIoT-connecteddevicesthatweseetodaygosomewaytosolvingthesechallenges,butastepchangeinhowedgedevicesareenabledmust
WHITEPAPER11
happenacrossallindustries.Wecansummarizethekeychallengesasfollows:
Developa‘cloud-like’mindsetattheedge:Thetraditionaldatacenter
modelof‘writeonceandrunanywhere’doesnotmapdirectlytoedge
devicesforpracticalreasons,howeverelementsofthatmodelarecriticalforaneffectiveedgecomputingevolution.Edgedevicestendtobe
applicationspecific(e.g.asmartcamera)butmustembraceelements
offrictionlessdevelopmentforspecificbenefits.Aswethinkaboutedgecomputingasanextensionofthedatacenter,weneedawholenew
mindsetintermsofhowaccessibletheseedgedevicesaretodevelopers,andhowtheysupportagiledevelopment,virtualprototyping,and
continuousimprovements.Todeliverthisvisionalsorequiresasignificantmindsetshiftfortraditionalembeddeddevelopers.Goneisthetraditional
‘linear’developmentflowofspecifying,implementing,testing,and
deployingapplications.Instead,weshifttoCI/CD/deliveryflowtospeed
timetomarket,maximizesoftwarere-useandultimatelyreducecost.
Todothis,themarketmustbuildcommonabstractedprogrammingmodelstoopentheaccessibilityofedgedevicestodevelopersacrossplatforms,
abstractingcomplexityandlimitinghardwaredependenciesexclusivelytowheretheseaddvalue,suchasforperformanceandpoweroptimization.
Securityandprivacyatscale:Abedrockofscalingthecloudouttothe
edgeisensuringrobustsecurityandprivacy.Buildingdevicesthathave
atrustedandconsistentapproachtosecurityiscriticalfortheirlifecycle
managementandensuringtrustaroundthedevice,connection,software
lifecycle,data,andservices.Withsoftwarestacksbecomingincreasingly
complexandmultivendor,weseegreateraneedforcomposablesoftware,wherebyeachpartyownsonlytheportionofsoftwarethattheycareabout.Withinthismodel,eachsoftwarecomponentessentiallyhasitsownsecurelifecycle.Underpinningthisistheneedforconsistentplatformsecurity
capabilities,suchassecureboot,secureupdates,securestorage,
WHITEPAPER12
andtrustedcrypto.Howeachofthesoftwarecomponentscanaccessthesesecureplatformservicestomanagetheirlifecycleiscritical.
Eliminateneedlessfragmentation:Needlessfragmentationholdsback
innovationandslowsthepaceofadoptionatscale.Itisthereforeessentialtoseekoutcommonalitythatremovesneedlessnon-differentiationsothesupplychaincanfocusonlyonthedifferentiationthataddsvaluetotheirbusinessandthemarket.Anobsessiveattentiontoefficiencyisneeded
bothinthedevelopmentofthedevice,aswellastheoperationalcosts.
Amodularapproachtosoftwaredeployment:Fragmentationchallenges
extendtosoftwareasweconsidertheincreasinglycomplexusecasesfor
edgedevices.Itiscommonplaceformultivendorsoftwarestackstorun
onanedgedevicewithmanythird-partycomponentsneedingtocome
togetherandinteroperate.Increasingly,end-marketdeploymentscareaboutwhatsoftwareisrunningonedgedevices.Fleetmanagers,forexample,
wanttoknowwhatoperatingsystemsaredeployed,whatsecuritypatchesarepushedout,andwheredifferentsoftwareassetsarecomingfrom.
Thedesireforchoice,coupledwithgrowingcomplexity,isdrivingtheneedformodular,interoperablesoftwarethatcanbemaintainedthroughoutitsdeployedlifetime.
Balancestandardizationanddifferentiation:Themarketmustembracestandardsandcommonalitywherenecessarytospeedtimetomarket,
reducetotalcostofownership,andeliminateneedlessfragmentation.
CollaboratingonArmcanbringtherightlevelofstandardization,while
allowinghardwareinnovationanddifferentiationtothrive.Thereisno
single‘recipe’foredgedevicesfromanArmplatformpointofview.
Instead,weconsider‘thesetofhardwareandsoftwareinterfacesneededtominimizethecostofbooting,running,andmaintainingoperatingsystemsandothersystemsoftwarethroughthelifetimeofthedevice’.
WHITEPAPER13
Benefitsofthisapproachinclude:
—Reducestime,cost,andeffortfromgettingsoftwaretoinstallandworkfordevicelifetimes.
—Removesnon-differentiatingcostfromtheecosystem.
—Allowstheecosystemtoinvestmoretimeandmoneyonworkthataddsvalue.
Today,initiativeslike
PARSEC
forstandardizedhardware-abstractedsecurityservicesarebecomingessential,asisaconsistentapproachtosecurity,whichisprovidedby
PSACertified
.Plus,through
ArmSystemReady,welookathowoperatingsystemsaresupportedonedgedevicesasacriticalfactor,alongsidetheneedtoofferandmaintainoperatingsystemdistributionsondevicesfortheircompletelifecycle,
whileeliminatingper-platformportingcosts.
HeterogeneityinedgeAI:Whenthinkingaboutcloudnative,
weimaginecontainerizedcomputeworkloadsthatcanruninafullyportablemannerinclouddatacenters.Asweestablishedearlyinthis
document,edgecomputingtendstobeapplicationspecificandoptimizedforcertainworkloadsandpower/performancebudgets.Overthelast
fewyears,weareseeingadeepeningtrendfor‘acceleratedcompute,’wherebyhardwareaccelerationisappliedtocommonandcompute-intensiveworkloads.Acceleratedcomputetakesmanyformsbut
principallyfallsintotwoareas:
01In-lineaccelerationthatoccursaspartoftheCPUoperation(e.g.,ArmScalableMatrixExtensions).
02Offloadacceleration(e.g.hardwarethatsitsalongsidetheCPU,
suchasanNPU,bprovidingheterogeneityintheprogrammingmodel).
WHITEPAPER14
Acceleratedcomputeisusedtoimproveperformance,reducepower
consumptionforspecificworkloads,orsometimesboth.Examininghow
developerexperiencesscaleacrossheterogeneousplatformsisessentialtoavoidneedlessfragmentationandsiloeddevelopmentsbecoming
deeplyentwinedtospecifichardwarevariants.Aswelooktowardsthe
evolutionofedgedevicesasoutlinedinthispaper,thepartialdecouplingofhardwareandapplicationasatrendmovesustowardan‘app-like’
modelthatfa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小吃春节活动方案
- 家居招聘活动方案
- 小区秦腔活动方案
- 定西红色团建活动方案
- 小公司在ktv抽奖小活动方案
- 家园烹调活动方案
- 宝马换新活动方案
- 宝山区活动品牌策划方案
- 小儿推拿引流活动方案
- 小区节庆活动方案
- 水利行业职业技能大赛(泵站运行工)理论考试题库(含答案)
- 2024年山东省消防工程查验技能竞赛理论考试题库-下(多选、判断题)
- 《输电线路实训(X证书)》课件-1.输电运检现场作业“十不干”
- 广东省潮州市潮安区2023-2024学年八年级下学期期末数学试题(解析版)
- 个体工商户登记(备案)申请书(个体设立表格)
- 2024-2030年中国蔬果保鲜剂行业市场深度分析及发展趋势与投资研究报告
- 部编人教版七年级下学期道德与法治培优辅差工作总结
- 广安市2023-2024学年高一下学期期末考试生物试题
- 课题研究学术报告职称答辩
- PEP小学英语五年级下册《Unit5-Read-and-write-Robin-at-the-zoo》教学设计
- 俞军产品方法论全概述
评论
0/150
提交评论