版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重难点05三角形中“老鹰捉小鸡”字模型【知识梳理】“老鹰捉小鸡”模型如图所示,∠A+∠ZBFC=∠DBF+∠FCE三角形三个内角的和等于180°三角形的外角等于与它不相邻的两本内角的和.【考点剖析】例1.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,试着找一找这个规律,你发现的规律是()A.∠1+∠2=2∠A B.∠1+∠2=∠A C.∠A=2(∠1+∠2) D.∠1+∠2=∠A【解答】解:如图,延长BD和CE交于A′,∵把△ABC沿DE折叠,当点A落在四边形BCED内部,∴∠ADE=∠A′DE,∠AED=∠A′ED,∴2∠ADE=180°﹣∠1,2∠AED=180°﹣∠2,∴∠ADE=90°﹣∠1,∠AED=90°﹣∠2,∵在△ADE中,∠A=180°﹣(∠AED+∠ADE),∴∠A=∠1+∠2,即2∠A=∠1+∠2.故选:A.例2.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.32° B.45° C.60° D.64°【解答】解:如图所示:由折叠的性质得:∠D=∠B=32°,根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+64°,∴∠1﹣∠2=64°.故选:D.例3.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2 B.3∠A=2(∠1﹣∠2) C.3∠A=2∠1﹣∠2 D.∠A=∠1﹣∠2【解答】解:如图,由翻折的性质得,∠3=∠A′DE,∠AED=∠A′ED,∴∠3=(180°﹣∠1),在△ADE中,∠AED=180°﹣∠3﹣∠A,∠CED=∠3+∠A,∴∠A′ED=∠CED+∠2=∠3+∠A+∠2,∴180°﹣∠3﹣∠A=∠3+∠A+∠2,整理得,2∠3+2∠A+∠2=180°,∴2×(180°﹣∠1)+2∠A+∠2=180°,∴2∠A=∠1﹣∠2.故选:A.例4.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC外的点C′处,若∠1=20°,则∠2的度数为()A.80° B.90° C.100° D.110°【解答】解:∵∠A=65°,∠B=75°,∴∠C=180°﹣65°﹣75°=40°,由折叠的性质可知,∠C′=∠C=40°,∴∠3=∠1+∠C′=60°,∴∠2=∠C+∠3=100°,故选:C.例5.如图,三角形纸片ABC中∠A=63°,∠B=77°,将纸片一角折叠,使点C落在△ABC的内部,若∠2=50°,则∠1=.【解答】解:设折痕为EF,连接CC′.∵∠2=∠ECC′+∠EC′C,∠1=∠FCC′+∠FC′C,∠ECF=∠EC′F,∴∠1+∠2=2∠ECF,∵∠C=180°﹣∠A﹣∠B=180°﹣63°﹣77°=40°,∴∠1=80°﹣50°=30°,故答案为:30°.例6.如图所示,把一个三角形纸片ABC的三个顶角向内折叠之后(3个顶点不重合),图中∠1+∠2+∠3+∠4+∠5+∠6=°.【解答】解:由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°﹣(∠B'FG+∠B'GF)﹣(∠C'HI+∠C'IH)﹣(∠A'DE+∠A'ED)=720°﹣(180°﹣∠B')﹣(180°﹣C')=(180°﹣A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.故答案为:360.例7.将纸片△ABC沿DE折叠使点A落在A′处的位置.(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.【解答】解:(1)2∠A′=∠1+∠2,理由沿DE折叠使点A落在A′处的位置,∴∠AED=∠A′ED,∠ADE=∠A′DE,∵∠AED+∠ADE=180°﹣∠A,∠1+∠2=180°+180°﹣2(∠AED+∠ADE),∴∠1+∠2=360°﹣2(180°﹣∠A′)=2∠A′;(2)2∠A′=∠2﹣∠1,理由:∵沿DE折叠使点A落在A′处的位置,∴∠A=∠A′,∵∠DME=∠A′+∠1,∠2=∠A+∠DME,∴∠2=∠A+∠A′+∠1,即2∠A′=∠2﹣∠1.【过关检测】一.选择题(共10小题)1.(2021秋•邹城市月考)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A.∠A=∠1+∠2 B.3∠A=2∠1+∠2 C.2∠A=∠1+∠2 D.3∠A=2(∠1+∠2)【分析】根据三角形的内角和定理,以及四边形的内角和定理即可求出答案.【解答】解:由题意可知:∠AED+∠ADE=180°﹣∠A,∠B+∠C=180°﹣∠A∵∠AED+∠ADE+∠1+∠2+∠B+∠C=360°,∴360°﹣2∠A+∠1+∠2=360°,∴2∠A=∠1+∠2,故选:C.【点评】本题考查三角形的定理,解题的关键是熟练运用三角形内角和定理,本题属于中等题型.2.(2021秋•秀屿区校级期中)如图,把△ABC纸片的∠A沿DE折叠,点A落在四边形CBDE外,则∠1、∠2与∠A的关系是()A.∠1+∠2=2∠A B.∠2﹣∠A=2∠1 C.∠2﹣∠1=2∠A D.∠1+∠A=∠2【分析】如图,分别延长CEBD交于A′点,然后利用三角形的外角与内角的关系可以得到∠2=∠EA′A+∠EAA′,∠1=∠DA′A+∠DAA′,而根据折叠可以得到∠EA′A=∠EAA′,∠DA′A=∠DAA′,然后利用等式的性质即可求解.【解答】解:如图:分别延长CE、BD交于A′点,∴∠2=∠EA′A+∠EAA′,∠1=∠DA′A+∠DAA′,而根据折叠可以得到∠EA′A=∠EAA′,∠DA′A=∠DAA′,∴∠2﹣∠1=2(∠EAA′﹣∠DAA′)=2∠EAD.故选:C.【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何基本知识,解题时应分别对每一个图形进行仔细分析,难度不大.3.(2021秋•河西区期中)在三角形纸片ABC中,∠A=65°,∠B=75°.将纸片的一角对折,使点C落在△ABC内,若∠1=20°,则∠2的度数为()A.50° B.60° C.70° D.80°【分析】根据题意,已知∠A=65°,∠B=75°,可结合三角形内角和定理和折叠变换的性质求解.【解答】解:∵∠A=65°,∠B=75°,∴∠C=180°﹣(65°+75°)=40°,∴∠CDE+∠CED=180°﹣∠C=140°,∴∠2=360°﹣(∠A+∠B+∠1+∠CED+∠CDE)=360°﹣300°=60°.故选:B.【点评】本题通过折叠变换考查三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.4.(2021秋•天门校级月考)如图,在三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠(折痕为DE),使点C落在△ABC内的C′处,若∠AEC′=20°,则∠BDC′的度数是()A.30° B.40° C.50° D.60°【分析】先根据已知条件,结合三角形内角和定理,可求∠C=40°,又因为△CED折叠后得到△C′ED,所以可知∠C′ED=∠CED,∠C′DE=∠CDE,而∠AEC′=20°,那么利用平角的定义,可求∠C′ED,在△C′DE中,利用三角形内角和等于180°,可求∠C′DE,进而可求∠C′DC,再结合平角定义,可求∠BDC′.【解答】解:∵∠A=65°,∠B=75°,∴∠C=180°﹣65°﹣75°=40°,∵∠AEC′=20°,∴∠C′EC=180°﹣20°=160°,又∵△CED关于DE折叠得到△C′ED,∴△CED≌△C′ED,∴∠C′ED=∠CED,∠C′DE=∠CDE,∴∠C′ED=∠CED=×160°=80°,∴在△C′DE中,∠C′DE=180°﹣80°﹣40°=60°,∴∠C′DC=60°×2=120°,∴∠BDC′=180°﹣120°=60°.故选:D.【点评】本题利用了平角的定义、折叠的性质、三角形内角和定理.平角等于180°.折叠后的两个图形全等.三角形的内角和等于180°.5.(2021•红旗区校级开学)如图,把△ABC纸片沿着DE折叠,当点A落在四边形BCED内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)【分析】利用三角形内角和的定理求.【解答】解:∵把△ABC纸片沿着DE折叠,点A落在四边形BCED内部,∴∠1+∠2=180°﹣∠ADA′+180°﹣∠AEA′=180°﹣2∠ADE+180°﹣2∠AED=360°﹣2(∠ADE+∠AED)=360°﹣2(180°﹣∠A)=2∠A.故选:B.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.6.(2022春•晋江市期末)如图,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE外部时,则∠A与∠1、∠2之间的数量关系是()A.2∠A=∠1﹣∠2 B.3∠A=2(∠1﹣∠2) C.3∠A=2∠1﹣∠2 D.∠A=∠1﹣∠2【分析】根据折叠的性质可得∠A′=∠A,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【解答】解:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠ADA′=180°﹣∠1,∠3=∠A′+∠2,∴∠A+∠ADA′+∠3=180°,即∠A+180°﹣∠1+∠A′+∠2=180°,整理得,2∠A=∠1﹣∠2.∴∠A=(∠1﹣∠2),即2∠A=∠1﹣∠2.故选:A.【点评】本题考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.7.(2022秋•淇滨区月考)如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE外点A'的位置,则下列结论正确的是()A.∠1+∠2=∠A B.∠1+∠2=2∠A C.∠1﹣∠2=∠A D.∠1﹣∠2=2∠A【分析】根据折叠的性质和三角形的外角的性质解答即可.【解答】解:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,∵∠1=∠A+∠3,∠3=∠A′+∠2,∴∠1=∠A+∠A′+∠2,∴∠1﹣∠2=2∠A,故选:D.【点评】本题考查的是三角形的外角性质和图形的翻折变换,理清图中角与角的关系是解决问题的关键.8.(2022秋•渝北区月考)如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为_____度.()A.50° B.60° C.70° D.80°【分析】如图延长AE、BF交于点C′,连接CC′.首先证明∠1+∠2=2∠AC′B,求出∠AC′B即可解决问题.【解答】解:如图延长AE、BF交于点C′,连接CC′.在△ABC′中,∠AC′B=180°﹣65°﹣75°=40°,∵∠ECF=∠AC′B=40°,∠1=∠ECC′+∠EC′C,∠2=∠FCC′+∠FC′C,∴∠1+∠2=∠ECC′+∠EC′C+∠FCC′+∠FC′C=2∠AC′B=80°,∵∠1=20°,∴∠2=60°,故选:B.【点评】本题考查翻折变换、三角形的内角和定理、三角形的外角等知识,解题的关键是灵活运用所学知识解决问题,记住基本结论∠1+∠2=2∠AC′B解决问题.9.(2022秋•江岸区校级月考)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,下列结论一定成立的是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)【分析】延长BE、CD相交于点A′,四边形的内角和为360°及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【解答】解:延长BE、CD相交于点A′.∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,∴2∠A+180°﹣∠2+180°﹣∠1=360°,∴2∠A=∠1+∠2.故选:B.【点评】本题主要考查的是翻折变换、四边形的内角和是360°,掌握此类辅助线的作法是解题的关键.10.(2020秋•电白区期末)如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36° B.72° C.50° D.46°【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:∠D=∠C=36°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,则∠1﹣∠2=72°.故选:B.【点评】此题考查了翻折变换(折叠问题)以及三角形外角性质,熟练掌握折叠的性质是解本题的关键.二.填空题(共2小题)11.(2020秋•南关区校级期末)如图,三角形纸片ABC中∠A=80°,∠B=60°,将纸片一角折叠,使点C落在△ABC的内部C′处,若∠2=38°,则∠1=42°.【分析】首先证明∠1+∠2=2∠C,利用这个结论解决问题即可.【解答】解:设折痕为EF,连接CC′.∵∠2=∠ECC′+∠EC′C,∠1=∠FCC′+∠FC′C,∠ECF=∠EC′F,∴∠1+∠2=2∠ECF,∵∠C=180°﹣∠A﹣∠B=180°﹣80°﹣60°=40°,∴∠1=80°﹣38°=42°,故答案为:42°.【点评】本题考查三角形内角和定理,翻折变换的性质等知识,解题的关键是证明∠1+∠2=2∠C.12.(2021秋•新城区校级月考)如图:将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A=50度.【分析】根据折叠的性质可知∠ADE=∠EDF,∠AED=∠DEF,利用平角是180°,求出∠ADE与∠AED的和,然后利用三角形内角和定理求出∠A的度数.【解答】解:∵将纸片△ABC沿DE折叠,点A落在点F处,∴∠ADE=∠EDF,∠AED=∠DEF,∴∠1+2∠ADE+∠2+2∠AED=180°+180°,∴∠1+∠2+2(∠ADE+∠AED)=360°,又∵∠1+∠2=100°,∴∠ADE+∠AED=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°.故答案是:50【点评】本题考查了翻折变换(折叠问题).解题时注意挖掘出隐含于题中的已知条件:三角形内角和是180°、平角的度数也是180°.三.解答题(共4小题)13.(2022秋•罗定市期末)放风筝是中国民间的传统游戏之一,风筝又称风琴,纸鹞,鹞子,纸鸢.如图1,小华制作了一个风筝,示意图如图2所示,AB=AC,DB=DC,他发现AD不仅平分∠BAC,且平分∠BDC,你觉得他的发现正确吗?请说明理由.【分析】利用SSS证明△ABD≌△ACD即可解决问题.【解答】解:结论正确.证明如下:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∠BDA=∠CDA,即AD不仅平分∠BAC,且平分∠BDC,∴结论正确.【点评】此题主要考查了全等三角形的性质与判定,比较简单.14.(2016秋•赣州期中)将纸片△ABC沿DE折叠使点A落在A′处的位置.(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A′落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠A′与∠2之间的关系是2∠A=∠2.(3)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.【分析】(1)根据折叠性质得出∠AED=∠A′ED,∠ADE=∠A′DE,根据三角形内角和定理得出∠AED+∠ADE=180°﹣∠A,代入∠1+∠2=180°+180°﹣2(∠AED+∠ADE)求出即可;(2)根据三角形外角性质得出∠DME=∠A′+∠1,∠2=∠A+∠DME,代入即可求出答案;(3)根据三角形外角性质得出∠DME=∠A′+∠1,∠2=∠A+∠DME,推出∠2=∠A+∠A′+∠1,即可得出答案.【解答】解:(1)图1中,2∠A=∠1+∠2,理由是:∵延DE折叠A和A′重合,∴∠AED=∠A′ED,∠ADE=∠A′DE,∵∠AED+∠ADE=180°﹣∠A,∠1+∠2=180°+180°﹣2(∠AED+∠ADE),∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A;(2)2∠A=∠2,如图∠2=∠A+∠EA′D=2∠A,故答案为:2∠A=∠2;(3)如图2,2∠A=∠2﹣∠1,理由是:∵延DE折叠A和A′重合,∴∠A=∠A′,∵∠DME=∠A′+∠1,∠2=∠A+∠DME,∴∠2=∠A+∠A′+∠1,即2∠A=∠2﹣∠1.【点评】本题考查了折叠的性质,三角形外角性质,三角形内角和定理的应用,主要考查学生运用定理进行推理和计算的能力.15.(2020秋•郯城县期末)探索归纳:(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于CA.90°B.135℃.270°D.315°(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=220°(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是∠1+∠2=180°+∠A(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.【分析】(1)利用了四边形内角和为360°和直角三角形的性质求解;(2)根据三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1)(2)可以直接写出结果;(4)根据折叠的性质,对应角相等,以及邻补角的性质即可求解.【解答】解:(1):∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.∴∠1+∠2等于270°.故选C;(2)∠1+∠2=180°+40°=220°,故答案是:220°;(3)∠1+∠2与∠A的关系是:∠1+∠2=180°+∠A;(4)∵△EFP是由△EFA折叠得到的,∴∠AFE=∠PFE,∠AEF=∠PEF∴∠1=180°﹣2∠AFE,∠2=180°﹣2∠AEF∴∠1+∠2=360°﹣2(∠AFE+∠AEF)又∵∠AFE+∠AEF=180°﹣∠A,∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.16.(2021秋•永春县期中)如图1,在△ABC中,∠ABC=90°,AB=BC,点P在线段BC上(不与点B、点C重合),以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养鸡场与饲养员的合作合同
- 媒体传播公司服务合同
- 2024年广告发布与代理服务合同2篇
- 2024年度特许经营合同特许经营范围和特许经营期限详细描述2篇
- 二零二四年度企业级大数据分析与应用服务合同2篇
- 2024年度砂石厂人力资源培训合同
- 2024年度环保涂料研发与生产许可合同
- 二零二四年度商铺合作开发合同3篇
- 2024年度建筑工程设计合同范本:房屋伸缩缝设计服务2篇
- 弱电工程2024年度施工与环保评估服务承包合同2篇
- 主变运输及就位专项施工措施
- 中医气功学导论期末试卷附答案
- 人类命运共同体视域下小学国际理解教育的实践探索
- 保安队排班表
- 50Hz微电子相敏轨道电路课件
- 中考数学阅读理解型问题复习
- 用户满意度评价表
- 室外配套工程施工组织设计
- 高中论文从建构理论看高中化学CAI软件的课题选择
- 圆的旋转问题
- 量学看盘决策系统使用说明
评论
0/150
提交评论