广东省广州荔湾区广雅中学2025届数学高一上期末经典试题含解析_第1页
广东省广州荔湾区广雅中学2025届数学高一上期末经典试题含解析_第2页
广东省广州荔湾区广雅中学2025届数学高一上期末经典试题含解析_第3页
广东省广州荔湾区广雅中学2025届数学高一上期末经典试题含解析_第4页
广东省广州荔湾区广雅中学2025届数学高一上期末经典试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州荔湾区广雅中学2025届数学高一上期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“,”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.()A.1 B.C. D.3.设集合,则()A. B.C.{2} D.{-2,2}4.已知的图象在上存在个最高点,则的范围()A. B.C. D.5.圆的圆心和半径为()A.(1,1)和11 B.(-1,-1)和11C.(-1,-1)和 D.(1,1)和6.已知函数f(x)=是奇函数,若f(2m-1)+f(m-2)≥0,则m的取值范围为()A. B.C. D.7.计算(16A.-1 B.1C.-3 D.38.集合,集合或,则集合()A. B.C. D.9.集合A={y|y=x+1,x∈R},B={y|y=2x,x∈R},则A∩B等于()A. B.C. D.,10.已知函数的图象上的每一点的纵坐标扩大到原来的倍,横坐标扩大到原来的倍,然后把所得的图象沿轴向右平移个单位,这样得到的曲线和的图象相同,则已知函数的解析式为A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________12.集合的非空子集是________________13.计算值为______14.已知,且,则=_______________.15.函数的图象与轴相交于点,如图是它的部分图象,若函数图象相邻的两条对称轴之间的距离为,则_________.16.已知函数,若时,恒成立,则实数k的取值范围是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=CD=1,BC=2,PD=(Ⅰ)求证:PD⊥平面PBC;(Ⅱ)求直线AB与平面PBC所成角的大小;(Ⅲ)求二面角P-AB-C的正切值18.已知函数为偶函数,当时,,(a为常数).(1)当x<0时,求的解析式:(2)设函数在[0,5]上的最大值为,求的表达式;(3)对于(2)中的,试求满足的所有实数成的取值集合.19.已知,,第三象限角,.求:(1)的值;(2)的值20.已知集合,.(1)求,;(2)若,且,求实数的取值范围.21.已知函数的定义域是,设,(1)求的定义域;(2)求函数的最大值和最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【详解】,时,,,时,,所以“,”是“”的充分而不必要条件,故选:.2、A【解析】直接利用诱导公式和两角和的正弦公式求出结果【详解】,故选:3、C【解析】解一元二次不等式,求出集合B,解得集合A,根据集合的交集运算求得答案.【详解】由题意解得:,故,或,所以,故选:C4、A【解析】根据题意列出周期应满足的条件,解得,代入周期计算公式即可解得的范围.【详解】由题可知,解得,则,故选:A【点睛】本题考查正弦函数图像的性质与周期,属于中档题.5、D【解析】根据圆的标准方程写出圆心和半径即可.【详解】因,所以圆心坐标为,半径为,故选:D6、B【解析】由已知结合f(0)=0求得a=-1,得到函数f(x)在R上为增函数,利用函数单调性化f(2m-1)+f(m-2)≥0为f(2m-1)≥f(-m+2),即2m-1≥-m+2,则答案可求【详解】∵函数f(x)=的定义域为R,且是奇函数,,即a=-1,∵2x在(-∞,+∞)上为增函数,∴函数在(-∞,+∞)上为增函数,由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范围为m≥1故选B【点睛】本题考查函数单调性与奇偶性的应用,考查数学转化思想方法,是中档题7、B【解析】原式=故选B8、C【解析】先求得,结合集合并集的运算,即可求解.【详解】由题意,集合或,可得,又由,所以.故选:C.9、A【解析】由得,得,则,故选A.10、B【解析】分析:将.的图象轴向左平移个单位,然后把所得的图象上的每一点的纵坐标变为原来的四分之一倍,横坐标变为原来的二分之一倍,即可得到函数的图象,从而可得结果.详解:利用逆过程:将.的图象轴向左平移个单位,得到的图象;将的图象上的每一点的纵坐标变为原来的四分之一倍得到的图象;将的图象上的每一点的横坐标变为原来的四分之一倍得到的图象,所以函数的解析式为,故选B.点睛:本题主要考查了三角函数图象变换,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.二、填空题:本大题共6小题,每小题5分,共30分。11、2.【解析】分析:要求小虫爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果详解:由题意知底面圆的直径AB=2,故底面周长等于2π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得2π=,解得n=90,所以展开图中∠PSC=90°,根据勾股定理求得PC=2,所以小虫爬行的最短距离为2.故答案为2点睛:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决三、12、【解析】结合子集的概念,写出集合A的所有非空子集即可.【详解】集合的所有非空子集是.故答案为:.13、1;【解析】14、【解析】由同角三角函数关系求出,最后利用求解即可.【详解】由,且得则,则.故答案为:.15、【解析】根据图象可得,由题意得出,即可求出,再代入即可求出,进而得出所求.【详解】由函数图象可得,相邻的两条对称轴之间的距离为,,则,,,又,即,,或,根据“五点法”画图可判断,,.故答案为:.16、【解析】当时,,当时,,又,如图所示:当时,在处取得最大值,且,令,则数列是以1为首项,以为公比的等比数列,∴,∴,若时,恒成立,只需,当上,均有恒成立,结合图形知:,∴,∴,令,,当时,,∴,∴,当时,,,∴,∴最大,∴,∴.考点:1.函数图像;2.恒成立问题;3.数列的最值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)30°;(Ⅲ).【解析】(Ⅰ)证明,则,又PD⊥PB即可证明平面(Ⅱ)过点D作AB的平行线交BC于点F,连结PF,DF与平面所成的角等于AB与平面所成的角,为直线DF和平面所成的角,在中,求解即可(Ⅲ)说明是二面角的平面角,在直角梯形ABCD内可求得,而,在中,求解即可【详解】(Ⅰ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD又因为BC∥AD,所以PD⊥BC,又PD⊥PB,PB与BC相交于点B,所以,PD⊥平面PBC.(Ⅱ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=CF=1又AD⊥DC,故BC⊥DC,ABCD为直角梯形,所以,DF=.

在Rt△DPF中,PD=,DF=,sin∠DFP==所以,直线AB与平面PBC所成角为30°.(Ⅲ)设E是CD的中点,则PE⊥CD,又AD⊥平面PDC,所以PE⊥平面ABCD.

在平面ABCD内作EG⊥AB交AB的延长线于G,连EG,则∠PGE是二面角P-AB-C的平面角.在直角梯形ABCD内可求得EG=,而PE=,所以,在Rt△PEG中,tan∠PGE==所以,二面角P-AB-C的正切值为【点睛】本题考查二面角的平面角以及直线与平面所成角的求法,直线与平面垂直的判断定理的应用,要正确地找出线面角及二面角的平面角,然后解三角形即可.18、(1)f(x)=x2-2ax+1;(2);(3){m|或}【解析】(1)设x<0,则-x>0,所以f(-x)=(-x)2+2a(-x)+1=x2-2ax+1,再根据函数的奇偶性化简即得函数的解析式.(2)对a分两种情况讨论,利用二次函数的图像和性质即得的表达式.(3)由题得或,解不等式组即得解.【详解】(1)设x<0,则-x>0,所以f(-x)=(-x)2+2a(-x)+1=x2-2ax+1.又因为f(x)为偶函数,所以f(-x)=f(x),所以当x<0时,f(x)=x2-2ax+1.(2)当x[0,5],f(x)=x2+2ax+1,对称轴x=-a,①当-a≥,即a≤-时,g(a)=f(0)=1;②当-a<,即a>-时,g(a)=f(5)=10a+26综合以上.(3)由(2)知,当a≤-时,g(a)为常函数,当a>-时,g(a)为一次函数且为增函数因为g(8m)=g(),所以有或,解得或,即m的取值集合为{m|或}【点睛】本题主要考查奇偶函数的解析式的求法,考查函数的最值的求法,考查函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.19、(1)(2)【解析】(1)利用给定条件结合同角公式求,再利用二倍角正弦公式计算即得;(2)由条件求出,由(1)求出,再借助和角的余弦公式计算即得.【小问1详解】因为是第三象限角,,则所以,【小问2详解】因为,,则,又,所以20、(1),(2)【解析】(1)解出集合,利用并集、补集以及交集的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论