2025届上海市金山区上海交大南洋中学数学高二上期末统考试题含解析_第1页
2025届上海市金山区上海交大南洋中学数学高二上期末统考试题含解析_第2页
2025届上海市金山区上海交大南洋中学数学高二上期末统考试题含解析_第3页
2025届上海市金山区上海交大南洋中学数学高二上期末统考试题含解析_第4页
2025届上海市金山区上海交大南洋中学数学高二上期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市金山区上海交大南洋中学数学高二上期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法正确的是()A.“若,则,全为0”的否命题为“若,则,全不为0”B.“若方程有实根,则”的逆命题是假命题C.命题“,”的否定是“,”D.“”是“直线与直线平行”的充要条件2.曲线为四叶玫瑰线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,苜蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.下列结论正确的个数是()①曲线C关于点(0,0)对称;②曲线C关于直线y=x对称;③曲线C的面积超过4π.A.0 B.1C.2 D.33.直线与圆的位置关系是()A.相交 B.相切C.相离 D.相交或相切4.若动圆的圆心在抛物线上,且恒过定点,则此动圆与直线()A.相交 B.相切C.相离 D.不确定5.已知球O的半径为2,球心到平面的距离为1,则球O被平面截得的截面面积为()A. B.C. D.6.在某市第一次全民核酸检测中,某中学派出了8名青年教师参与志愿者活动,分别派往2个核酸检测点,每个检测点需4名志愿者,其中志愿者甲与乙要求在同一组,志愿者丙与丁也要求在同一组,则这8名志愿者派遣方法种数为()A.20 B.14C.12 D.67.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.8.已知椭圆上一点到椭圆一个焦点的距离是,则点到另一个焦点的距离为()A.2 B.3C.4 D.59.椭圆()的右顶点是抛物线的焦点,且短轴长为2,则该椭圆方程为()A. B.C. D.10.已知各项都为正数的等比数列,其公比为q,前n项和为,满足,且是与的等差中项,则下列选项正确的是()A. B.C D.11.下列结论正确的个数为()①若,则;②若,则;③若,则;④若,则A.4 B.3C.2 D.112.已知关于的不等式的解集是,则的值是()A. B.5C. D.7二、填空题:本题共4小题,每小题5分,共20分。13.已知数列都是等差数列,公差分别为,数列满足,则数列的公差为__________14.已知,是椭圆:的两个焦点,点在上,则的最大值为________15.设函数是函数的导函数,已知,且,则使得成立的x的取值范围是_________.16.经过两点的双曲线的标准方程是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆上的点到焦点的最大距离为3,离心率为.(1)求椭圆的标准方程;(2)设直线与椭圆交于不同两点,与轴交于点,且满足,若,求实数的取值范围.18.(12分)已知函数在处的切线方程为.(1)求的解析式;(2)求函数图象上的点到直线的距离的最小值.19.(12分)如图,是底面边长为1的正三棱锥,分别为棱上的点,截面底面,且棱台与棱锥的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)求证:为正四面体;(2)若,求二面角的大小;(3)设棱台的体积为,是否存在体积为且各棱长均相等的直四棱柱,使得它与棱台有相同的棱长和?若存在,请具体构造出这样的一个直四棱柱,并给出证明;若不存在,请说明理由.20.(12分)在数列中,,且,(1)求的通项公式;(2)求的前n项和的最大值21.(12分)已知是公差不为0的等差数列,,且成等比数列(1)求数列通项公式;(2)设,求数列的前项和22.(10分)已知圆的圆心在第一象限内,圆关于直线对称,与轴相切,被直线截得的弦长为.(1)求圆的方程;(2)若点,求过点的圆的切线方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】A选项,全为0的否定是不全为0;B选项,先写出逆命题,再判断出真假;C选项,命题“,”的否定是“,”,D选项,根据直线平行,列出方程和不等式,求出,进而判断出充要条件.【详解】“若,则,全为0”的否命题为“若,则,不全为0”,A错误;若方程有实根,则的逆命题是若,则方程有实根,由得:,其中,所以若,则方程有实根是真命题,故B错误;命题“,”的否定是“,”,C错误;直线与直线平行,需要满足且,解得:,所以“”是“直线与直线平行”的充要条件,D正确;故选:D2、C【解析】根据图像或解析式即可判断对称性①②;估算第一象限内图像面积即可判断③.【详解】①将点(-x,-y)代入后依然为,故曲线C关于原点对称;②将点(y,x)代入后依然为,故曲线C关于y=x对称;③曲线C在四个象限的图像是完全相同的,不妨只研究第一象限的部分,∵,∴曲线C上离原点最远的点的距离为显然第一象限内曲线C的面积小于以为直径的圆的面积,又∵,∴第一象限内曲线C的面积小于,则曲线C的总面积小于4π.故③错误.故选:C.3、A【解析】由直线恒过定点,且定点圆内,从而即可判断直线与圆相交.【详解】解:因为直线恒过定点,而,所以定点在圆内,所以直线与圆相交,故选:A.4、B【解析】根据题意得定点为抛物线的焦点,为准线,进而根据抛物线的定义判断即可.【详解】解:由题知,定点为抛物线的焦点,为准线,因为动圆的圆心在抛物线上,且恒过定点,所以根据抛物线的定义得动圆的圆心到直线的距离等于圆心到定点,即圆心到直线的距离等于动圆的半径,所以动圆与直线相切.故选:B5、B【解析】根据球的性质可求出截面圆的半径即可求解.【详解】由球的性质可知,截面圆的半径为,所以截面的面积.故选:B6、B【解析】分(甲乙)、(丙丁)再同一组和不在同一组两种情况讨论,按照分类、分步计数原理计算可得;【详解】解:依题意甲乙丙丁四人再同一组,有种;(甲乙),(丙丁)不在同一组,先从其余4人选2人与甲乙作为一组,另外2人与丙丁作为一组,再安排到两个核酸检测点,则有种,综上可得一共有种安排方法,故选:B7、D【解析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故选:D8、C【解析】根据椭圆的定义,结合题意,即可求得结果.【详解】设椭圆的两个焦点分别为,故可得,又到椭圆一个焦点的距离是,故点到另一个焦点的距离为.故选:.9、A【解析】求得抛物线的焦点从而求得,再结合题意求得,即可写出椭圆方程.【详解】因为抛物线的焦点坐标为,故可得;又短轴长为2,故可得,即;故椭圆方程为:.故选:.10、D【解析】根据题意求得,即可判断AB,再根据等比数列的通项公式即可判断C;再根据等比数列前项和公式即可判断D.【详解】解:因为各项都为正数的等比数列,,所以,又因是与的等差中项,所以,即,解得或(舍去),故B错误;所以,故A错误;所以,故C错误;所以,故D正确.故选:D.11、D【解析】根据常数函数的导数为0,可判断①;根据幂函数的求导公式,可判断②;根据指数函数以及对数函数的求导公式,可判断③④.【详解】由得:,故①错误;对于,,故,故②正确;对于,则,故③错误;对于,则,故④错误,故选:D12、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用等差数列的定义即得.【详解】∵数列都是等差数列,公差分别为,数列满足,∴.故答案为:.14、9【解析】根据椭圆的定义可得,结合基本不等式即可求得的最大值.【详解】∵在椭圆上∴∴根据基本不等式可得,即,当且仅当时取等号.故答案为:9.15、【解析】构造函数利用导数研究单调性,即可得到答案;【详解】,令,,单调递减,且,,x的取值范围是,故答案为:16、【解析】设双曲线的标准方程将点坐标代入求参数,即可确定标准方程.【详解】令,则,可得,令,则,无解.故双曲线的标准方程是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),或【解析】(1)由椭圆的性质可知:,解得a和c的值,即可求得椭圆C的标准方程;(2)将直线方程代入椭圆方程,由韦达定理求得:,,λ,根据向量的坐标坐标,(x1+1,y1)=λ(x2+1,y2),求得,由,代入即可求得实数m的取值范围【详解】(1)由已知,解得,所以,所以椭圆的标准方程为.(2)由已知,设,联立方程组,消得,由韦达定理得①②因为,所以,所以③,将③代入①②,,消去得,所以.因为,所以,即,解得,所以,或.【点睛】本题考查椭圆的标准方程及简单性质,直线与椭圆的位置关系,韦达定理,向量的坐标表示,不等式的解法,考查计算能力,属于中档题18、(1);(2).【解析】(1)由题可得,然后利用导数的几何意义即求;(2)由题可得切点到直线的距离最小,即得.【小问1详解】∵函数,∴的定义域为,,∴在处切线的斜率为,由切线方程可知切点为,而切点也在函数图象上,解得,∴的解析式为;【小问2详解】由于直线与直线平行,直线与函数在处相切,所以切点到直线的距离最小,最小值为,故函数图象上的点到直线的距离的最小值为.19、(1)证明见解析;(2);(3)存在,构造棱长均为,底面相邻两边的夹角为的直四棱柱即满足条件.【解析】(1)由棱台、棱锥的棱长和相等可得,再由面面平行有,结合正四面体的结构特征即可证结论.(2)取BC的中点M,连接PM、DM、AM,由线面垂直的判定可证平面PAM,即是二面角的平面角,进而求其大小.(3)设直四棱柱的棱长均为,底面相邻两边的夹角为,结合已知条件用表示出即可确定直四棱柱.【小问1详解】由棱台与棱锥的棱长和相等,∴,故.又截面底面ABC,则,,∴,从而,故为正四面体.【小问2详解】取BC的中点M,连接PM、DM、AM,由,,得:平面PAM,而平面PAM,故,从而是二面角的平面角.由(1)知,三棱锥的各棱长均为1,所以.由D是PA的中点,得.在Rt△ADM中,,故二面角的大小为.【小问3详解】存在满足条件的直四棱柱.棱台的棱长和为定值6,体积为V.设直四棱柱的棱长均为,底面相邻两边的夹角为,则该四棱柱的棱长和为6,体积为.因为正四面体的体积是,所以,,从而,故构造棱长均为,底面相邻两边的夹角为的直四棱柱,即满足条件.20、(1)(2)40【解析】(1)根据递推关系,判定数列是等差数列,然后求得首项和公差,进而得到通项公式;(2)令,求得,进而根据数列的前项和的意义求得当或5时,有最大值,进而求得和的最大值.【小问1详解】解:∵数列满足,∴,∴是等差数列,设的公差为d,则,即,解得,∴,∴【小问2详解】令,得,解得,所以当或5时,有最大值,且最大值为21、(1)(2)【解析】(1)设等差数列的公差为,依题意得到方程组,解得、,即可求出数列的通项公式;(2)由(1)可得,再利用分组求和法求和即可;【小问1详解】解:设等差数列的公差为,由题意,得,解得或,因为,所以【小问2详解】解:当时,,所以22、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论