版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省眉山实验高级中学2025届数学高一上期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学校高一、高二、高三共有学生3500人,其中高三学生人数是高一学生人数的两倍,高二学生人数比高一学生人数多300人,现在用分层抽样的方法抽取的样本容量为35,则应抽取高一学生人数为()A.8 B.11C.16 D.102.已知函数,则方程的实数根的个数为()A. B.C. D.3.若集合,,则A. B.C. D.4.与函数的图象不相交的一条直线是()A. B.C. D.5.若函数在区间上存在零点,则实数的取值范围是A. B.C. D.6.定义在上的偶函数在时为增函数,若实数满足,则的取值范围是A. B.C. D.7.已知是定义在上的偶函数,那么的最大值是()A.0 B.C. D.18.纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是(℃),空气的温度是(℃),经过t分钟后物体的温度T(℃)可由公式得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出,则空气温度是()A.5℃ B.10℃C.15℃ D.20℃9.在平面直角坐标系中,角以为始边,终边与单位圆交于点,则()A. B.C. D.10.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>aC.a>c>b D.a>b>c二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则___________.12.已知,则_______.13.已知定义在上的偶函数,当时,若直线与函数的图象恰有八个交点,其横坐标分别为,,,,,,,,则的取值范围是___________.14.角的终边经过点,且,则________.15.已知扇形半径为8,弧长为12,则中心角为__________弧度,扇形面积是________16._____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在边长为8的正三角形ABC中,E,F依次是AB,AC的中点,,D,H,G为垂足,若将绕AD旋转,求阴影部分形成的几何体的表面积与体积.18.已知函数=(1)判断的奇偶性;(2)求在的值域19.人口问题是世界普遍关注的问题,通过对若干个大城市的统计分析,针对人口密度分布进行模拟研究,发现人口密度与到城市中心的距离之间呈现负指数关系.指数模型是经典的城市人口密度空间分布的模型之一,该模型的计算是基于圈层距离法获取距城市中心距离和人口密度数据的,具体而言就是以某市中心位置为圆心,以不同的距离为半径划分圈层,测量和分析不同圈层中的人口状况.其中x是圈层序号,将圈层序号是x的区域称为“x环”(时,1环表示距离城市中心0~3公里的圈层;时,2环表示距离城市中心3~6公里的圈层;以此类推);是城市中心的人口密度(单位:万人/平方公里),为x环的人口密度(单位:万人/平方公里);b为常数;.下表为某市2006年和2016年人口分布的相关数据:年份b20062.20.1320162.30.10(1)求该市2006年2环处的人口密度(参考数据:,结果保留一位小数);(2)2016年该市某环处的人口密度为市中心人口密度的,求该环是这个城市的多少环.(参考数据:)20.(1)已知,则;(2)已知角的终边上有一点的坐标是,其中,求21.已知,(1)求的值;(2)求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先求出高一学生的人数,再利用抽样比,即可得到答案;【详解】设高一学生的人数为人,则高二学生人数为,高三学生人数为,,,故选:A2、B【解析】由已知,可令,要求,即为,原题转化为直线与的图象的交点情况,通过画出函数的图象,讨论的取值,即可直线与的图象的交点情况.【详解】令,则,①当时,,,,即,②当时,,,画出函数的图象,如图所示,若,即,无解;若,直线与的图象有3个交点,即有3个不同实根;若,直线与的图象有2个交点,即有2个不同实根;综上所述,方程的实数根的个数为5个,故选:3、C【解析】因为集合,,所以A∩B=x故选C.4、C【解析】由题意求函数的定义域,即可求得与函数图象不相交的直线.【详解】函数的定义域是,解得:,当时,,函数的图象不相交的一条直线是.故选:C【点睛】本题考查正切函数的定义域,属于简单题型.5、C【解析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围【详解】由题,函数f(x)=ax+1单调,又在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1故选C【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题6、C【解析】因为定义在上的偶函数,所以即又在时为增函数,则,解得故选点睛:本题考查了函数的奇偶性,单调性和运用,考查对数不等式的解法及运算能力,所求不等式中与由对数式运算法则可知互为相反数,与偶函数的性质结合可将不等式化简,借助函数在上是增函数可确定在为减函数,利用偶函数的对称性可得到自变量的范围,从而求得关于的不等式,结合对数函数单调性可得到的取值范围7、C【解析】∵f(x)=ax2+bx是定义在[a-1,2a]上偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故选C.8、B【解析】依题意可得,即,即可得到方程,解得即可;【详解】:依题意,即,又,所以,即,解得;故选:B9、A【解析】根据任意角三角函数的概念可得出,然后利用诱导公式求解.【详解】因为角以为始边,且终边与单位圆交于点,所以,则.故选:A.【点睛】当以为始边,已知角终边上一点的坐标为时,则,.10、D【解析】,,;且;.考点:对数函数的单调性.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据余弦值及角的范围,应用同角的平方关系求.【详解】由,,则.故答案为:.12、【解析】直接利用二倍角的余弦公式求得cos2a的值【详解】∵.故答案为:13、【解析】先作出函数的大致图象,由函数性质及图象可知八个根是两两关于轴对称的,因此分析可得,,进而将转化为形式,再数形结合,求得结果.【详解】作出函数的图象如图:直线与函数的图象恰有八个交点,其横坐标分别为,,,,,,,,不妨设从左到右分别是,,,,,,,,则,由函数解析式以及图象可知:,即,同理:;由图象为偶函数,图象关于轴对称可知:,所以又因为是方程的两根,所以,而,所以,故,即,故答案为:14、【解析】由题意利用任意角的三角函数的定义直接计算【详解】角的终边经过点,且,解得.故答案为:15、.【解析】详解】试题分析:根据弧长公式得,扇形面积考点:弧度制下弧长公式、扇形面积公式的应用16、【解析】利用指数与对数的运算性质,进行计算即可【详解】.【点睛】本题考查了指数与对数的运算性质,需要注意,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、表面积为:,体积为:【解析】由题意知,旋转后几何体是一个圆锥,从上面挖去一个圆柱,所求旋转体的表面积由三部分组成:圆锥的底面、侧面,圆柱的侧面,旋转体的体积为圆锥的体积减去圆柱的体积,结合题中的数据,代入圆柱和圆锥的侧面积公式和底面积公式及体积公式进行求解即可.【详解】由题意知,旋转后几何体是一个圆锥,从上面挖去一个圆柱,且圆锥的底面半径为4,高为,圆柱的底面半径为2,高为.所求旋转体的表面积由三部分组成:圆锥的底面、侧面,圆柱的侧面.故所求几何体的表面积为:阴影部分形成的几何体的体积:【点睛】本题考查简单组合体的表面积和体积的求解、圆柱和圆锥的体积和表面积公式;考查运算求解能力和空间想象能力;熟练掌握旋转体的形成过程和表面积和体积公式是求解本题的关键;属于中档题.18、(1)奇函数(2)【解析】(1)由奇偶性的定义判断(2)由对数函数性质求解【小问1详解】,则,的定义域为,,故是奇函数【小问2详解】,当时,,故,即在的值域为19、(1)1.7(2)4【解析】(2)根据表中数据,由求解;(2)根据2016年该市某环处的人口密度为市中心人口密度的,由求解.【小问1详解】解:由表中数据得:;【小问2详解】因为2016年该市某环处的人口密度为市中心人口密度的,所以,即,所以,解得,所以该环是这个城市的4环.20、(1);(2)当时,;当时,【解析】(1)分子分母同时除以,然后代入计算即可;(2)利用三角函数的定义求出和,再分和讨论计算即可.【详解】(1)分子分母同时除以得原式=.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 311函数的概念第二课时课件高一上学期数学人教A版
- 水箱制造供应商招标
- 个人房屋贷款居间服务合同案例
- 自然人零售采购合同
- 箱包购销合同签订法律意义解读
- 英文陶瓷采购合同条款
- Module7Unit2Therearetwelveboysonthebike(课件)四年级上册
- 房屋买卖合同安全保障
- 食品采买合同
- 保证书格式汇编
- 2023年12月英语六级真题及参考答案
- Unit+5+The+Monarchs+Journey+Language+points+课件-【知识精讲精研】高中英语外研版(2019)必修第一册+
- 高考日语副助词默写单
- 高一政治学科期末考试质量分析报告(7篇)
- 项目立项增资申请书
- 中国近现代史纲要社会实践报告十二篇
- 小学期中表彰大会活动方案
- 基于单元主题意义开展的小学英语项目化学习 论文
- 万用表使用方法-完整版课件PPT
- 供电维保服务方案
- 中学学校地震应急预案流程图
评论
0/150
提交评论