版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏山南地区第二高级中学2025届高一数学第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数与传染源感染后至隔离前时长t(单位:天)的模型:.已知甲传染源感染后至隔离前时长为5天,与之相关确诊病例人数为8;乙传染源感染后至隔离前时长为8天,与之相关确诊病例人数为20.若某传染源感染后至隔离前时长为两周,则与之相关确诊病例人数约为()A.44 B.48C.80 D.1252.在同一坐标系中,函数与大致图象是()A. B.C. D.3.已知一几何体的三视图,则它的体积为A. B.C. D.4.如图,已知的直观图是一个直角边长是1的等腰直角三角形,那么的面积是A. B.C.1 D.5.下列函数中,在区间上是减函数的是()A. B.C. D.6.下列各式不正确的是()A.sin(α+)=-sinα B.cos(α+)=-sinαC.sin(-α-2)=-sinα D.cos(α-)=sinα7.定义在上的函数满足,且当时,.若关于的方程在上至少有两个实数解,则实数的取值范围为A. B.C. D.8.已知函数在[2,3]上单调递减,则实数a的取值范围是()A. B.C. D.9.已知函数,,若恰有2个零点,则实数a的取值范围是()A. B.C. D.10.若,则的最小值是()A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.=_______.12.圆关于直线的对称圆的标准方程为___________.13.已知点,,在函数的图象上,如图,若,则______.14.函数的值域为___________.15.边长为2的正方形ABCD沿对角线BD折成直二面角,则折叠后AC的长为________16.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设全集,集合,(1)当时,求;(2)若,求实数的取值范围18.设是定义在上的奇函数,当时,.(1)求的解析式;(2)解不等式.19.如图,在中,已知为线段上的一点,.(1)若,求的值;(2)若,,,且与的夹角为时,求的值20.已知集合,(1)当时,求以及;(2)若,求实数m的取值范围21.已知函数,,且.(1)求的值;(2)求的定义域;(3)求不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据求得,由此求得的值.【详解】依题意得,,,所以.故若某传染源感染后至隔离前时长为两周,则相关确诊病例人数约为125.故选:D2、B【解析】根据题意,结合对数函数与指数函数的性质,即可得出结果.【详解】由指数函数与对数函数的单调性知:在上单调递增,在上单调递增,只有B满足.故选:B.3、C【解析】所求体积,故选C.4、D【解析】根据斜二测画法的基本原理,将平面直观图与还原为原几何图形,利用三角形面积公式可得结果.【详解】平面直观图与其原图形如图,直观图是直角边长为的等腰直角三角形,还原回原图形后,边还原为长度不变,仍为,直观图中的在原图形中还原为长度,且长度为,所以原图形的面积为,故选D.【点睛】本题主要考查直观图还原几何图形,属于简单题.利用斜二测画法作直观图,主要注意两点:一是与轴平行的线段仍然与与轴平行且相等;二是与轴平行的线段仍然与轴平行且长度减半.5、D【解析】根据二次函数,幂函数,指数函数,一次函数的单调性即可得出答案.【详解】解:对于A,函数在区间上是增函数,故A不符合题意;对于B,函数在区间上是增函数,故B不符合题意;对于C,函数在区间上是增函数,故C不符合题意;对于D,函数在区间上是减函数,故D符合题意.故选:D.6、B【解析】将视为锐角,根据“奇变偶不变,符号看象限”得出答案.【详解】将视为锐角,∵在第三象限,正弦为负值,且是的2倍为偶数,不改变三角函数的名称,∴,A正确;∵在第四象限,余弦为正值,且是的3倍为奇数数,要改变三角函数的名称,∴,B错误;∵,在第四象限,正弦为负值,且0是的0倍为偶数,不改变三角函数的名称,∴,C正确;∵在第四象限,余弦为正值,且是的1倍为奇数,要改变三角函数的名称,∴,D正确.故选:B.7、C【解析】原问题等价于函数与的图象至少有两个交点【详解】解:关于的方程在上至少有两个实数解,等价于函数与的图象至少有两个交点,因为函数满足,且当时,,所以当时,,时,,时,,所以的大致图象如图所示:因为表示恒过定点,斜率为的直线,所以要使两个函数图象至少有两个交点,由图可知只需,即,故选:C8、C【解析】根据复合函数的单调性法则“同增异减”求解即可.【详解】由于函数在上单调递减,在定义域内是增函数,所以根据复合函数的单调性法则“同增异减”得:在上单调递减,且,所以且,解得:.故的取值范围是故选:C.9、B【解析】利用数形结合的方法,作出函数的图象,简单判断即可.【详解】依题意,函数的图象与直线有两个交点,作出函数图象如下图所示,由图可知,要使函数的图象与直线有两个交点,则,即.故选:B.【点睛】本题考查函数零点问题,掌握三种等价形式:函数零点个数等价于方程根的个数等价于两个函数图象交点个数,属基础题.10、C【解析】采用拼凑法,结合基本不等式即可求解.【详解】因为,,当且仅当时取到等号,故的最小值是3.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】利用对数的运算法则进行求解.【详解】.故答案为:.12、【解析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【点睛】本题考查圆关于直线对称的圆,属于基础题13、【解析】设的中点为,连接,由条件判断是等边三角形,并且求出和的长度,即根据周期求.【详解】设的中点为,连接,,,且,是等边三角形,并且的高是,,即,,即,解得:.故答案为:【点睛】本题考查根据三角函数的周期求参数,意在考查数形结合分析问题和解决问题的能力,属于基础题型,本题的关键是利用直角三角形的性质和三角函数的性质判断的等边三角形.14、【解析】由函数定义域求出的取值范围,再由的单调性即可得解.【详解】函数的定义域为R,而,当且仅当x=0时取“=”,又在R上单调递减,于是有,所以函数的值域为.故答案为:15、2【解析】取的中点,连接,,则,则为二面角的平面角点睛:取的中点,连接,,根据正方形可知,,则为二面角的平面角,在三角形中求出的长.本题主要是在折叠问题中考查了两点间的距离.折叠问题要注意分清在折叠前后哪些量发生了变化,哪里量没变16、2【解析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)【解析】(1)由得到,然后利用集合的补集和交集运算求解.(2)化简集合,根据,分和两种情况求解.【详解】(1)当时,或,或.(2),若,则当时,,不成立,解得,的取值范围是.18、(1);(2)(-∞,-2)∪(0,2)【解析】(1)奇函数有f(0)=0,再由x<0时,f(x)=-f(-x)即可求解;(2)由(1)分段求解不等式,最后取并集即可.试题解析:(1)因为f(x)是定义在上的奇函数,所以当x=0时,f(x)=0,当x<0时,f(x)=-f(-x),-x>0,又因为当x>0时,f(x)=,.所以当x<0时,f(x)=-f(-x)=-=..综上所述:此函数的解析式.(2)f(x)<-,当x=0时,f(x)<-不成立;当x>0时,即<-,所以<-,所以>,所以3x-1<8,解得x<2,当x<0时,即<-,所以>-,所以3-x>32,所以x<-2,综上所述解集是(-∞,-2)∪(0,2).19、(1);(2).【解析】(1)根据平面向量基本定理可得,整理可得结果;(2)根据平面向量基本定理可求得,,根据数量积的运算法则代入模长和夹角,整理可求得结果.【详解】(1)由得:,(2)由得:又,,且与的夹角为则【点睛】本题考查平面向量基本定理的应用、平面向量数量积的求解,关键是能将所求向量的数量积通过平面向量基本定理转化为已知模长和夹角的向量的数量积运算.20、(1),(2)【解析】(1)解不等式求出集合,根据集合的交并补运算可得答案;(2)由集合的包含关系可得答案.【小问1详解】,当时,,∴,,,∴.【小问2详解】由题可知,所以,解得,所以实数m的取值范
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 模具保养与加工协议模板
- 家庭装饰工程保修合同
- 国际劳动合同样本
- 施工单位工程保证金协议书
- 住宅小区物业管理合同
- 写字楼下停车场租赁协议
- 房屋租赁合同书2024年2
- 2024年合资企业合作协议书
- 老年人租房免责协议书
- 店铺合作经营协议书范本
- 珍爱生命主题班会
- 陈皮仓储合同模板例子
- 2024年安全生产月全国安全生产知识竞赛题库及答案(共六套)
- 2024-2025学年沪教版小学四年级上学期期中英语试卷及解答参考
- DB23T 3844-2024煤矿地区地震(矿震)监测台网技术要求
- 《阿凡达》电影赏析
- DB42-T 2286-2024 地铁冷却塔卫生管理规范
- 合作伙伴合同协议书范文5份
- 小学生主题班会《追梦奥运+做大家少年》(课件)
- 公安机关人民警察高级执法资格考题及解析
- 浙教版信息科技四年级上册全册教学设计
评论
0/150
提交评论