版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市丰华中学2025届数学高二上期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆C的圆心在直线上,且与直线相切于点,则圆C方程为()A. B.C. D.2.正方体的棱长为,为侧面内动点,且满足,则△面积的最小值为()A. B.C. D.3.已知正方形的四个顶点都在椭圆上,若的焦点F在正方形的外面,则的离心率的取值范围是()A. B.C. D.4.某海关缉私艇在执行巡逻任务时,发现其所在位置正西方向20nmile处有一走私船只,正以30nmile/h的速度向北偏东30°的方向逃窜,若缉私艇突然发生机械故障,20min后才以的速度开始追赶,则在走私船只不改变航向和速度的情况下,缉私艇追上走私船只的最短时间为()A.1h B.C. D.5.已知椭圆(a>b>0)的离心率为,则=()A. B.C. D.6.已知等差数列满足,则其前10项之和为()A.140 B.280C.68 D.567.如果双曲线的一条渐近线方程为,且经过点,则双曲线的标准方程是()A. B.C. D.8.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率(每分钟鸣叫的次数)与气温(单位:℃)存在着较强的线性相关关系.某地观测人员根据如表的观测数据,建立了关于的线性回归方程,则下列说法不正确的是()(次数/分钟)2030405060(℃)2527.52932.536A.的值是20B.变量,呈正相关关系C.若的值增加1,则的值约增加0.25D.当蟋蟀52次/分鸣叫时,该地当时的气温预报值为33.5℃9.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B.C. D.10.已知椭圆,则椭圆的长轴长为()A.2 B.4C. D.811.已知空间向量,,且,则的值为()A. B.C. D.12.已知椭圆的焦点分别为,,椭圆上一点P与焦点的距离等于6,则的面积为()A.24 B.36C.48 D.60二、填空题:本题共4小题,每小题5分,共20分。13.如果圆锥的底面圆半径为1,母线长为2,则该圆锥的侧面积为___14.双曲线的焦距为____________15.设数列的前n项和为,且是6和的等差中项,若对任意的,都有,则的最小值为________16.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)设x=2是函数f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当时,.18.(12分)已知函数,曲线y=f(x)在点(0,4)处的切线方程为(1)求a,b的值;(2)求f(x)的极大值19.(12分)在平面直角坐标系中,为坐标原点,曲线上点都在轴及其右侧,且曲线上的任一点到轴的距离比它到圆的圆心的距离小1(1)求曲线的方程;(2)已知过点的直线交曲线于点,若,求面积20.(12分)已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.21.(12分)一个完美均匀且灵活的平衡链被它的两端悬挂,且只受重力的影响,这个链子形成的曲线形状被称为悬链线(如图所示).选择适当的坐标系后,悬链线对应的函数近似是一个双曲余弦函数,其解析式可以为,其中,是常数.(1)当时,判断并证明的奇偶性;(2)当时,若最小值为,求的最小值.22.(10分)已知椭圆经过点,左焦点为.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆的右顶点,过点且斜率为的直线交椭圆于两点,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设出圆心坐标,根据垂直直线的斜率关系求得圆心坐标,结合两点距离公式得半径,即可得圆方程【详解】设圆心为,则圆心与点的连线与直线l垂直,即,则点,所以圆心为,半径,所以方程为,故选:C2、B【解析】建立空间直角坐标系如图所示,设由,得出点的轨迹方程,由几何性质求得,再根据垂直关系求出△面积的最小值【详解】以点为原点,分别为轴建立空间直角坐标系,如图所示:则,,设所以,得,所以因为平面,所以故△面积的最小值为故选:B3、C【解析】如图由题可得,进而可得,即求.【详解】如图根据对称性,点D在直线y=x上,可设,则,∴,可得,,即,又解得.故选:C.4、A【解析】设小时后,相遇地点为,在三角形中根据题目条件得出,再在三角形中,由勾股定理即可求出.【详解】以缉私艇为原点,建立如下图所示的直角坐标系.图中走私船所在位置为,设缉私艇追上走私船的最短时间为,相遇地点为.则,走私船以的速度向北偏东30°的方向逃窜,60°.因为20min后缉私艇才以的速度开始追赶走私船,所以20min走私船行走了,到达.在三角形中,由余弦定理知:,则,所以.在三角形中,,,有:,化简得:,则.缉私艇追上走私船只的最短时间为1h.故选:A.点睛】5、D【解析】由离心率得,再由转化为【详解】因为,所以8a2=9b2,所以故选:D.6、A【解析】根据等差数列的性质,可得,结合等差数列的求和公式,即可求解.【详解】由题意,等差数列满足,根据等差数列的性质,可得,所以数列的前10项和为.故选:A.7、D【解析】根据渐近线方程设出双曲线方程,然后将点代入,进而求得答案.【详解】因为双曲线的一条渐近线方程为,所以设双曲线方程为,将代入得:,即双曲线方程为.故选:D.8、D【解析】根据样本中心过经过线性回归方程、正相关的性质和线性回归方程的意义进行判断即可.【详解】由题意,得,,则,故A正确;由线性回归方程可知,,变量,呈正相关关系,故B正确;若的值增加1,则的值约增加0.25,故C正确;当时,,故D错误.故选:D.9、C【解析】利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.10、B【解析】根据椭圆的方程求出即得解.【详解】解:由题得椭圆的所以椭圆的长轴长为.故选:B11、B【解析】根据向量垂直得,即可求出的值.【详解】.故选:B.12、A【解析】由题意可得出与、、的值,在根据椭圆定义得的值,即可得到是直角三角形,即可求出的面积.【详解】由题意知,.根据椭圆定义可知,是直角三角形,.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、2π【解析】由圆锥的侧面积公式即可求解【详解】由题意,圆锥底面周长为2π×1=2π,又母线长为2,所以圆锥的侧面积故答案为:2π.14、【解析】根据双曲线的方程求出,再求焦距的值.【详解】因为双曲线方程为,所以,.双曲线的焦距为.故答案为:.15、【解析】先根据和项与通项关系得通项公式,再根据等比数列求和公式得,再根据函数单调性得取值范围,即得取值范围,解得结果.【详解】因为是6和的等差中项,所以当时,当时,因此当为偶数时,当为奇数时,因此因为在上单调递增,所以故答案为:【点睛】本题考查根据和项求通项、等比数列定义、等比数列求和公式、利用函数单调性求值域,考查综合分析求解能力,属较难题.16、18【解析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查【详解】前四场中有一场客场输,第五场赢时,甲队以获胜的概率是前四场中有一场主场输,第五场赢时,甲队以获胜的概率是综上所述,甲队以获胜的概率是【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以获胜的两种情况;易错点之三是是否能够准确计算三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),的单调递减区间为,单调递增区间为;(2)证明见解析;【解析】(1)求出函数的定义域与导函数,依题意可得,即可求出参数的值,再根据导函数与函数的单调性的关系求出函数的单调区间;(2)依题意可得,令,即证,,又,所以即证,令,利用导数说明其单调性,即可得解;【详解】解:(1)因为,定义域为,所以,因为是函数的极值点,所以,所以,解得,所以,令,则,所以在上单调递增,又,所以当时,,即,所以在上单调递减,当时,,即,所以上单调递增,综上可得的单调递减区间为,单调递增区间为;(2)证明:依题意即证,即证,令,则,所以即证,因为,所以即证,令,则,所以当时,,当时,所以,所以,所以当时,18、(1)a=4,b=4(2)【解析】(1)由题意得到关于的方程组,求解方程组即可求出答案.(2)结合(1)中求得的函数解析式,求导得到的单调性,可得当x=-2时,函数f(x)取得极大值.【小问1详解】由已知得f(0)=4,f′(0)=4,故b=4,a+b=8从而a=4,b=4【小问2详解】由(1)知,,令f′(x)=0得,x=-ln2或x=-2从而当时,f′(x)>0;当x∈(-2,-ln2)时,f′(x)<0故f(x)在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减当x=-2时,函数f(x)取得极大值,极大值为19、(1)(2)【解析】(1)由题意直接列或根据抛物线的定义求轨迹方程(2)待定系数法设直线方程,联立直线与抛物线方程,根据抛物线的定义,利用韦达定理解出直线方程,再求面积【小问1详解】解法1:配方法可得圆的方程为,即圆的圆心为,设的坐标为,由已知可得,化简得,曲线的方程为解法2:配方可得圆的方程为,即圆的圆心为,由题意可得上任意一点到直线的距离等于该点到圆心的距离,由抛物线的定义可得知,点的轨迹为以点为焦点的抛物线,所以曲线的方程为【小问2详解】抛物线的焦点为,准线方程为,由,可得的斜率存在,设为,,过的直线的方程为,与抛物线的方程联立,可得,设,的横坐标分别为,,可得,,由抛物线的定义可得,解得,即直线的方程为,可得到直线的距离为,,所以的面积为20、(1)(2)【解析】(1)设是公差为d的等差数列,是公比为q的等比数列,运用通项公式可得,,进而得到所求通项公式;(2)求得,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.【小问1详解】解:(1)设是公差为d的等差数列,是公比为q的等比数列,由,,可得,;即有,,则,则;【小问2详解】解:,则数列的前n项和为.21、(1)偶函数(2)10【解析】(1)根据偶函数定义直接判断可知;(2)由基本不等式求得的最小值,得到a、b的关系,然后代入目标式,分离常数,然后可得.【小问1详解】当时,,定义域为R,因为所以为偶函数.【小问2详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版企业人力资源总监职责与权益合同3篇
- 武汉体育学院《地下水数值模拟基础与应用》2023-2024学年第一学期期末试卷
- 武汉传媒学院《现代分析检验技术应用》2023-2024学年第一学期期末试卷
- 二零二五年度建筑工地安全文明施工评估合同3篇
- 二零二五版儿童乐园开业庆典承包合同范本3篇
- 2024陶瓷厂劳务外派工作合同模板3篇
- 2025版大型工程船舶租赁合同6篇
- 威海职业学院《数值计算与仿真》2023-2024学年第一学期期末试卷
- 二零二五年度酒店会议场地预订与策划服务合同3篇
- 天津城市职业学院《工程光学》2023-2024学年第一学期期末试卷
- 第22单元(二次函数)-单元测试卷(2)-2024-2025学年数学人教版九年级上册(含答案解析)
- 蓝色3D风工作总结汇报模板
- 安全常识课件
- 河北省石家庄市2023-2024学年高一上学期期末联考化学试题(含答案)
- 小王子-英文原版
- 2024年江苏省导游服务技能大赛理论考试题库(含答案)
- 2024年中考英语阅读理解表格型解题技巧讲解(含练习题及答案)
- 新版中国食物成分表
- 浙江省温州市温州中学2025届数学高二上期末综合测试试题含解析
- 保安公司市场拓展方案-保安拓展工作方案
- GB/T 15843.2-2024网络安全技术实体鉴别第2部分:采用鉴别式加密的机制
评论
0/150
提交评论