安徽省巢湖第一中学2025届高一上数学期末监测试题含解析_第1页
安徽省巢湖第一中学2025届高一上数学期末监测试题含解析_第2页
安徽省巢湖第一中学2025届高一上数学期末监测试题含解析_第3页
安徽省巢湖第一中学2025届高一上数学期末监测试题含解析_第4页
安徽省巢湖第一中学2025届高一上数学期末监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省巢湖第一中学2025届高一上数学期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,则的值是A. B.C. D.2.下列函数中,值域为的偶函数是A. B.C. D.3.已知点在第二象限,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限4.的值为A. B.C. D.5.已知,则的取值范围是()A. B.C. D.6.当时,在同一平面直角坐标系中,函数与的图象可能为A. B.C. D.7.对于空间中的直线,以及平面,,下列说法正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则8.已知,,都是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.下列说法正确的是()A.若,则B.若,则C.若,则D.若,则10.若函数的零点所在的区间为,则整数的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.表示一位骑自行车和一位骑摩托车的旅行者在相距80km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3h,晚到1h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5h后追上了骑自行车者;④骑摩托车者在出发1.5h后与骑自行车者速度一样其中,正确信息的序号是________12.已知点,,在函数的图象上,如图,若,则______.13.已知平面向量,的夹角为,,则=______14.,若,则________.15.已知一个圆锥的母线长为1,其高与母线的夹角为45°,则该圆锥的体积为____________.16.在平面直角坐标系中,以轴为始边作两个锐角,,它们的终边分别与单位圆相交于,两点,,的纵坐标分别为,.则的终边与单位圆交点的纵坐标为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且(1)求f(x)的解析式;(2)判断f(x)在区间(0,1)上的单调性,并用定义法证明18.已知函数是奇函数,且;(1)判断函数在区间的单调性,并给予证明;(2)已知函数(且),已知在的最大值为2,求的值19.如图,在平行四边形中,设,.(1)用向量,表示向量,;(2)若,求证:.20.已知函数满足,且.(1)求a和函数的解析式;(2)判断在其定义域的单调性.21.已知函数(a>0且)是偶函数,函数(a>0且)(1)求b的值;(2)若函数有零点,求a的取值范围;(3)当a=2时,若,使得恒成立,求实数m的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由已知利用同角三角函数基本关系式可求,的值,即可得解【详解】由题意,知,且,所以,则,故选B【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,其中解答中熟练应用同角三角函数的基本关系式,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.2、D【解析】值域为的偶函数;值域为R的非奇非偶函数;值域为R的奇函数;值域为的偶函数.故选D3、C【解析】利用任意角的三角函数的定义,三角函数在各个象限中的负号,求得角α所在的象限【详解】解:∵点P(sinα,tanα)在第二象限,∴sinα<0,tanα>0,若角α顶点为坐标原点,始边为x轴的非负半轴,则α的终边落在第三象限,故选:C4、C【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故选C.5、B【解析】根据对数函数的性质即可确定的范围.【详解】由对数及不等式的性质知:,而,所以.故选:B6、C【解析】当时,单调递增,单调递减故选7、D【解析】根据空间直线和平面的位置关系对四个选项逐一排除,由此确定正确的选项【详解】对于A选项,可能异面,故A错误;对于B选项,可能有,故B错误;对于C选项,的夹角不一定为90°,故C错误;因为,故,因为,故,故D正确,故选D.【点睛】本小题主要考查空间两条直线的位置关系,考查直线和平面、平面和平面位置关系的判断,属于基础题.8、B【解析】利用充分、必要条件的定义,结合不等式的性质判断题设条件间的推出关系,即可知条件间的充分、必要关系.【详解】当时,若时不成立;当时,则必有成立,∴“”是“”的必要不充分条件.故选:B9、C【解析】运用作差法可以判断C,然后运用代特殊值法可以判断A、B、D,进而得到答案.【详解】对A,令,则.A错误;对B,令,则.B错误;对C,因为,而,则,所以,即.C正确;对D,令,则.D不正确.故选:C.10、C【解析】结合函数单调性,由零点存在性定理可得解.【详解】由为增函数,且,可得零点所在的区间为,所以.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、①②③【解析】看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确,④错误故答案为①②③.点睛:研究函数问题离不开函数图象,函数图象反映了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题、寻找解决问题的方法12、【解析】设的中点为,连接,由条件判断是等边三角形,并且求出和的长度,即根据周期求.【详解】设的中点为,连接,,,且,是等边三角形,并且的高是,,即,,即,解得:.故答案为:【点睛】本题考查根据三角函数的周期求参数,意在考查数形结合分析问题和解决问题的能力,属于基础题型,本题的关键是利用直角三角形的性质和三角函数的性质判断的等边三角形.13、【解析】=代入各量进行求解即可.【详解】=,故答案.【点睛】本题考查了向量模的求解,可以通过先平方再开方即可,属于基础题.14、【解析】分和两种情况解方程,由此可得出的值.【详解】当时,由,解得;当时,由,解得(舍去).综上所述,.故答案为:.15、##【解析】由题可得,然后利用圆锥的体积公式即得.【详解】设圆锥的底面半径为r,高为h,由圆锥的母线长为1,其高与母线的夹角为45°,∴,∴该圆锥的体积为.故答案为:.16、【解析】根据任意角三角函数的定义可得,,,,再由展开求解即可.【详解】以轴为始边作两个锐角,,它们的终边分别与单位圆相交于,两点,,的纵坐标分别为,所以,是锐角,可得,因为锐角的终边与单位圆相交于Q点,且纵坐标为,所以,是锐角,可得,所以,所以的终边与单位圆交点的纵坐标为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)f(x)在(0,1)上单调递减,证明见解析.【解析】(1)根据即可求出a=b=1,从而得出;(2)容易判断f(x)在区间(0,1)上单调递减,根据减函数的定义证明:设x1,x2∈(0,1),并且x1<x2,然后作差,通分,得出,根据x1,x2∈(0,1),且x1<x2说明f(x1)>f(x2)即可【详解】解:(1)∵;∴;解得a=1,b=1;∴;(2)f(x)在区间(0,1)上单调递减,证明如下:设x1,x2∈(0,1),且x1<x2,则:=;∵x1,x2∈(0,1),且x1<x2;∴x1-x2<0,,;∴;∴f(x1)>f(x2);∴f(x)在(0,1)上单调递减【点睛】本题考查减函数的定义,根据减函数的定义证明一个函数是减函数的方法和过程,清楚的单调性18、(1)函数在区间是递增函数;证明见解析;(2)或【解析】(1)由奇函数定义建立方程组可求出,再用定义法证明单调性即可;(2)根据复合函数的单调性,分类讨论的单调性,结合函数的单调性研究最值即可求解【详解】(1)∵是奇函数,∴,又,且,所以,,经检验,满足题意得,所以函数在区间是递增函数证明如下:且,所以有:由,得,,又,故,所以,即,所以函数在区间是递增函数(2)令,由(1)可得在区间递增函数,①当时,是减函数,故当取得最小值时,(且)取得最大值2,在区间的最小值为,故的最大值是,∴②当时,是增函数,故当取得最大值时,(且)取得最大值2,在区间的最大值为,故的最大值是,∴或19、(1),.(2)证明见解析【解析】(1)根据向量的运算法则,即可求得向量,;(2)由,根据向量的运算法则,求得,即可求解.【小问1详解】解:在平行四边形中,由,,根据向量的运算法则,可得,.【小问2详解】解:因为,可得,所以.20、(1);;(2)在其定义域为单调增函数.【解析】(1)由,可得,再由,可求出的值,从而可得函数的解析式;(2)利用函数的单调性定义进行判断即可【详解】解:(1)由,得,,得;所以;(2)该函数的定义域为,令,所以,所以,因为,,所以,所以在其定义域为单调增函数.21、(1)(2)(3)【解析】(1)根据f(x)为偶函数,由f(-x)=-f(x),即对恒成立求解;(2)由有零点,转化为有解,令,转化为函数y=p(x)图象与直线y=a有交点求解;(3)根据,使得成立,由求解.【小问1详解】解:因f(x)为偶函数,所以,都有f(-x)=-f(x),即对恒成立,对恒成立,对恒成立,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论