吉林省蛟河高级中学2025届高一数学第一学期期末学业质量监测模拟试题含解析_第1页
吉林省蛟河高级中学2025届高一数学第一学期期末学业质量监测模拟试题含解析_第2页
吉林省蛟河高级中学2025届高一数学第一学期期末学业质量监测模拟试题含解析_第3页
吉林省蛟河高级中学2025届高一数学第一学期期末学业质量监测模拟试题含解析_第4页
吉林省蛟河高级中学2025届高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省蛟河高级中学2025届高一数学第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则()A.-3 B.-1C.1 D.32.直线的倾斜角是()A.30° B.60°C.120° D.150°3.函数满足:为偶函数:在上为增函数若,且,则与的大小关系是A. B.C. D.不能确定4.已知函数在R上是单调函数,则的解析式可能为()A. B.C. D.5.已知菱形的边长为2,,点分别在边上,,.若,则等于()A. B.C. D.6.“,”的否定是()A., B.,C., D.,7.若,则角终边所在象限是A.第一或第二象限 B.第一或第三象限C.第二或第三象限 D.第三或第四象限8.已知函数:①y=2x;②y=log2x;③y=x-1;④y=;则下列函数图像(第一象限部分)从左到右依次与函数序号的对应顺序是()A.②①③④ B.②③①④C.④①③② D.④③①②9.设y1=0.4,y2=0.5,y3=0.5,则()A.y3<y2<y1 B.y1<y2<y3C.y2<y3<y1 D.y1<y3<y210.已知函数的定义域是且满足如果对于,都有不等式的解集为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,,且,则的最小值为________12.奇函数的定义域为,若在上单调递减,且,则实数的取值范围是________________.13.已知命题“∀x∈R,e x≥a”14.求值:____.15.计算的值为__________16.设函数,若其定义域内不存在实数,使得,则的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的最值及相应的的值;(2)若函数在上单调递增,求的取值范围18.已知,,.(1)求,的值;(2)若,求值.19.已知集合,.(1)当时,求;(2)若,求实数的取值范围.20.直线l经过两点(2,1)、(6,3).(1)求直线l的方程;(2)圆C的圆心在直线l上,并且与x轴相切于(2,0)点,求圆C的方程21.已知圆过三个点.(1)求圆的方程;(2)过原点的动直线与圆相交于不同的两点,求线段的中点的轨迹.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用同角三角函数基本关系式中的技巧弦化切求解.【详解】.故选:D【点睛】本题考查了同角三角函数基本关系中的弦化切技巧,属于容易题.2、C【解析】设直线的倾斜角为,得到,即可求解,得到答案.【详解】设直线的倾斜角为,又由直线,可得直线的斜率为,所以,又由,解得,即直线的倾斜角为,故选:C【点睛】本题主要考查了直线的斜率与倾斜角的关系,以及直线方程的应用,其中解答中熟记直线的斜率和直线的倾斜角的关系是解答的关键,着重考查了推理与运算能力,属于基础题.3、A【解析】根据题意,由为偶函数可得函数的对称轴为,进而结合函数的单调性可得上为减函数,结合,且分析可得,据此分析可得答案【详解】根据题意,函数满足为偶函数,则函数的对称轴为,则有,又由在上为增函数,则在上为减函数,若,则,又由,则,则有,又由,则,故选A【点睛】本题考查函数的单调性与奇偶性的综合应用,涉及函数的对称性,属于中档题4、C【解析】根据条件可知当时,为增函数,在在为增函数,且,结合各选项进行分析判断即可【详解】当时,为增函数,则在上为增函数,且,A.在上为增函数,,故不符合条件;B.为减函数,故不符合条件;C.在上为增函数,,故符合条件;D.为减函数,故不符合条件.故选:C.5、C【解析】,,即①,同理可得②,①+②得,故选C考点:1.平面向量共线充要条件;2.向量的数量积运算6、C【解析】利用含有一个量词的命题的否定的定义求解即可【详解】“,”的否定是“,,”故选:C7、D【解析】利用同角三角函数基本关系式可得,结合正切值存在可得角终边所在象限【详解】,且存在,角终边所在象限是第三或第四象限故选D【点睛】本题考查三角函数的象限符号,是基础题8、D【解析】图一与幂函数图像相对应,所以应④;图二与反比例函数相对应,所以应为③;图三与指数函数相对应,所以应为①;图四与对数函数图像相对应,所以应为②所以对应顺序为④③①②,故选D9、B【解析】本题考查幂函数与指数函数的单调性考查幂函数,此为定义在上的增函数,所以,则;考查指数函数,此为定义在在上的减函数,所以,所以所以有故正确答案为10、D【解析】令x=,y=1,则有f()=f()+f(1),故f(1)=0;令x=,y=2,则有f(1)=f()+f(2),解得,f(2)=﹣1,令x=y=2,则有f(4)=f(2)+f(2)=﹣2;∵对于0<x<y,都有f(x)>f(y),∴函数f(x)是定义在(0,+∞)上的减函数,故f(﹣x)+f(3﹣x)≥﹣2可化为f(﹣x(3﹣x))≥f(4),故,解得,﹣1≤x<0.∴不等式的解集为故选D点睛:本题重点考查了抽象函数的性质及应用,的原型函数为的原型函数为,.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】应用基本不等式“1”的代换求最小值即可,注意等号成立的条件.【详解】由题设,知:当且仅当时等号成立.故答案为:4.12、【解析】因为奇函数的定义域为,若在上单调递减,所以在定义域上递减,且,所以解得,故填.点睛:利用奇函数及其增减性解不等式时,一方面要确定函数的增减性,注意奇函数在对称区间上单调性一致,同时还要注意函数的定义域对问题的限制,以免遗漏造成错误.13、a≤0【解析】根据∀x∈R,e x≥a成立,【详解】因为∀x∈R,e所以e 则a≤0,故答案为:a≤014、【解析】根据诱导公式以及正弦的两角和公式即可得解【详解】解:因为,故答案为:15、【解析】.16、【解析】按的取值范围分类讨论.【详解】当时,定义域,,满足要求;当时,定义域,取,,时,,不满足要求;当时,定义域,,,满足要求;当时,定义域,取,,时,,不满足要求;综上:故答案为:【点睛】关键点睛:由参数变化引起的分类讨论,可根据题设按参数在不同区间,对应函数的变化,找到参数的取值范围.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当时,,当时,;(2)【解析】(1)化简得,再求三角函数的最值得解;(2)先求出函数的单调增区间为,可得在单调递增,即得解.【详解】(1)∵,当时,,,当时,,(2)因为,则,解得,令,得,可得在单调递增,若上单调递增,则,所以的取值范围是【点睛】关键点睛:解答第二问的关键求出函数在单调递增,即得到.18、(1),(2)【解析】(1)先求出,再由同角三角函数基本关系求解即可;(2)根据角的变换,再由两角差的余弦公式求解.【小问1详解】∵,∴.∵,∴,∴,且,解得,∴,【小问2详解】∵,,∴,∴,∴.19、(1);(2).【解析】(1)求出集合A和B,根据并集的计算方法计算即可;(2)求出,分B为空集和不为空集讨论即可.【小问1详解】,当时,,∴;【小问2详解】{或x>4},当时,,,解得a<1;当时,若,则解得.综上,实数的取值范围为.20、(1)x-2y=0;(2)(x-2)2+(y-1)2=1【解析】(1)由直线过的两点坐标求得直线斜率,在借助于点斜式方程可得到直线方程;(2)借助于圆的几何性质可知圆心在直线上,又圆心在直线上,从而可得到圆心坐标,圆心与的距离为半径,进而可得到圆的方程试题解析:(1)由已知,直线的斜率,所以,直线的方程为.(2)因为圆的圆心在直线上,可设圆心坐标为,因圆与轴相切于点,所以圆心在直线上,所以,所以圆心坐标为,半径为1,所以,圆的方程为考点:1.直线方程;2.圆的方程21、(1)(2)【解析】(1)设圆的方程为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论