广西南宁市、玉林市、贵港市等2025届高二上数学期末质量检测模拟试题含解析_第1页
广西南宁市、玉林市、贵港市等2025届高二上数学期末质量检测模拟试题含解析_第2页
广西南宁市、玉林市、贵港市等2025届高二上数学期末质量检测模拟试题含解析_第3页
广西南宁市、玉林市、贵港市等2025届高二上数学期末质量检测模拟试题含解析_第4页
广西南宁市、玉林市、贵港市等2025届高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西南宁市、玉林市、贵港市等2025届高二上数学期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的一个方向向量为,则它的斜率为()A. B.C. D.2.已知点P在抛物线上,点Q在圆上,则的最小值为()A. B.C. D.3.执行如图所示的程序框图,则输出的A. B.C. D.4.数列,,,,…的一个通项公式为()A. B.C. D.5.若两直线与互相垂直,则k的值为()A.1 B.-1C.-1或1 D.26.在中,B=30°,BC=2,AB=,则边AC的长等于()A. B.1C. D.27.渐近线方程为的双曲线的离心率是()A.1 B.C. D.28.如图,在四棱锥中,底面ABCD是平行四边形,已知,,,,则()A. B.C. D.9.平面的法向量为,平面的法向量为,则下列命题正确的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直10.如图,在棱长为1的正方体中,点B到直线的距离为()A. B.C. D.11.如图,在三棱锥S—ABC中,点E,F分别是SA,BC的中点,点G在棱EF上,且满足,若,,,则()A. B.C. D.12.已知数列满足,则()A.32 B.C.1320 D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知与所在平面垂直,且,,,点P、Q分别在线段BD、CD上,沿直线PQ将向上翻折,使D与A重合.则直线AP与平面ACQ所成角的正弦值为______14.已知数列的前的前n项和为,数列的的前n项和为,则满足的最小n的值为______15.给定点、、与点,求点到平面的距离______.16.已知函数有两个极值点,则实数a的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥P-ABCD中,PA⊥平面ABCD,O为底面正方形ABCD对角线的交点,E为PD的中点,且PA=AD.(1)求证:PB∥平面EAC;(2)求直线BD与平面EAC所成角的正弦值.18.(12分)曲线的左、右焦点分别为,左、右顶点分别为,C上的点M满足,且直线的斜率之积等于(1)求C的方程;(2)过点的直线l交C于A,B两点,若,其中,证明:19.(12分)已知函数,.(1)若函数与在x=1处的切线平行,求函数在处的切线方程;(2)当时,若恒成立,求实数a的取值范围.20.(12分)已知函数,(),(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求a,b的值(2)当时,若函数在区间[k,2]上的最大值为28,求k的取值范围21.(12分)已知函数,且(1)求曲线在点处的切线方程;(2)求函数在区间上的最小值22.(10分)已知椭圆的焦距为4,点在G上.(1)求椭圆G的方程;(2)过椭圆G右焦点的直线l与椭圆G交于M,N两点,O为坐标原点,若,求直线l的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据的方向向量求得斜率.【详解】且是直线的方向向量,.故选:A2、C【解析】先计算抛物线上的点P到圆心距离的最小值,再减去半径即可.【详解】设,由圆心,得,∴时,,∴故选:C.3、B【解析】根据输入的条件执行循环,并且每一次都要判断结论是或否,直至退出循环.【详解】,,,;,【点睛】本题考查程序框图,执行循环,属于基础题.4、B【解析】根据给定数列,结合选项提供通项公式,将n代入验证法判断是否为通项公式.【详解】A:时,排除;B:数列,,,,…满足.C:时,排除;D:时,排除;故选:B5、B【解析】根据互相垂直的两直线的性质进行求解即可.【详解】由,因此直线的斜率为,直线的斜率为,因为两直线与互相垂直,所以,故选:B6、B【解析】利用余弦定理即得【详解】由余弦定理,得,解得AC=1故选:B.7、B【解析】根据双曲线渐近线方程可确定a,b的关系,进而求得离心率.【详解】因为双曲线近线方程为,故双曲线为等轴双曲线,则a=b,故离心率为,则,故选:B.8、A【解析】利用空间向量加法法则直接求解【详解】连接BD,如图,则故选:A9、B【解析】根据可判断两平面垂直.【详解】因为,所以,所以,垂直.故选:B.10、A【解析】以为坐标原点,以为单位正交基底,建立空间直角坐标系,取,,利用向量法,根据公式即可求出答案.【详解】以为坐标原点,以为单位正交基底,建立如图所示的空间直角坐标系,则,,取,,则,,则点B到直线AC1的距离为.故选:A11、D【解析】利用空间向量的加、减运算即可求解.详解】由题意可得故选:D12、A【解析】先令,求出,再当时,由,可得,然后两式相比,求出,从而可求出,进而可求得答案【详解】当时,,当时,由,可得,两式相除可得,所以,所以,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】取的中点,的中点,以所在直线为轴,以所在直线为轴,以所在直线为轴,建立空间直角坐标系,设,根据求出,再由空间向量的数量积即可求解.【详解】取的中点,的中点,如图以所在直线为轴,以所在直线为轴,以所在直线为轴,建立空间直角坐标系,不妨设,则,,,由,即,解得,所以,故,设为平面ACQ的一个法向量,因为,,由,即,所以,设直线AP与平面ACQ所成角为,则.故答案为:14、9【解析】由数列的前项和为,则当时,,所以,所以数列的前和为,当时,,当时,,所以满足的最小的值为.点睛:本题主要考查了等差数列与等比数列的综合应用问题,其中解答中涉及到数列的通项与的关系,推导数列的通项公式,以及等差、等比数列的前项和公式的应用,熟记等差、等比数列的通项公式和前项和公式是解答的关键,着重考查了学生的推理与运算能力.15、【解析】先求出平面的法向量,再利用点到面的距离公式计算即可.【详解】设平面的法向量为,点到平面的距离为,,,即,令,得故答案为:.16、【解析】由题可得有两个不同正根,利用分离参数法得到.令,,只需和有两个交点,利用导数研究的单调性与极值,数形结合即得.【详解】∵的定义域为,,要使函数有两个极值点,只需有两个不同正根,并且在的两侧的单调性相反,在的两侧的单调性相反,由得,,令,,要使函数有两个极值点,只需和有两个交点,∵,令得:0<x<1;令得:x>1;所以在上单调递增,在上单调递减,当时,;当时,;作出和的图像如图,所以,即,即实数a的取值范围为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)利用线面平行的判断定理,证明线线平行,即可证明;(2)建立空间直角坐标系,求平面的法向量,利用公式,即可求解.【小问1详解】连结EO,由题意可得O为BD的中点,又E是PD的中点,∴PB∥EO,又∵EO平面EAC,PB平面EAC,∴PB∥平面EAC;【小问2详解】如图,以A为原点,AB、AD、AP所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,设AD=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),∴=(-2,2,0),=(0,1,1),=(2,2,0),设平面EAC的法向量为=(x,y,z),则,即,即,令y=1得x=-1,z=-1,∴平面EAC的一个法向量为=(-1,1,-1),∴设直线BD与平面EAC所成的角为θ,则sinθ=∴直线BD与平面EAC所成的角的正弦值.18、(1)(2)证明见解析【解析】(1)由椭圆定义可得到,再利用斜率公式及直线的斜率之积等于,列出方程,化简对比系数可得;(2)分直线l的斜率为0和不为0两种情况讨论,利用可得到T在定直线上,且该直线是的中垂线即可得到证明.【小问1详解】因为C上的点M满足,所以C表示焦点在x轴上的椭圆,且,即,,所以,设,则,①所以直线的斜率,直线的斜率,由已知得,即,②由①②得,所以C的方程为【小问2详解】当直线l的斜率为0时,A与重合,B与重合,,,成立.当直线l的斜率不为0时,设l的方程为联立方程组,消x整理得所以,解得或设,则,由,得,所以设,由,得,所以,所以,所以点T在直线上,且,所以是等腰三角形,且,所以,综上,【点睛】关键点点晴:本题第二问突破点是证明T在定直线上,且该直线是的垂直平分线,从而得到,考查学生的数学运算能力,转化化归思想.19、(1);(2).【解析】(1)求出函数的导数,利用切线平行求出a,即可求出切线方程;(2)先把已知条件转化为,令,,利用导数求出的最小值,即可求出实数a的取值范围.【详解】(1),故,而,故,故,解得:,故,故的切线方程是:,即;(2)当时,恒成立等价于,令,.则,令,解得:;令,解得:;所以在上单减,在上单增,所以,所以.即实数a的取值范围为.20、【解析】(1)求a,b的值,根据曲线与曲线在它们的交点处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,列方程组,即可求出的值;(2)求k的取值范围.,先求出的解析式,由已知时,设,求导函数,确定函数的极值点,进而可得时,函数在区间上的最大值为;时,函数在在区间上的最大值小于,由此可得结论试题解析:(1),因为曲线与曲线在它们的交点处具有公共切线,所以,所以;(2)当时,,,,令,则,令,得,所以在与上单调递增,在上单调递减,其中为极大值,所以如果在区间最大值为,即区间包含极大值点,所以考点:导数的几何意义,函数的单调性与最值21、(1)(2)【解析】(1)由题意,求出的值,然后根据导数的几何意义即可求解;(2)根据导数与函数单调性关系,判断函数在区间上的单调性,从而即可求解.【小问1详解】解:由题意,,因为,所以,解得,所以,,因为,,所以曲线在点处的切线方程为,即;【小问2详解】解:因为,,所以时,,时,,所以在上单调递减,在上单调递增,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论