![贵州省遵义市正安一中2025届数学高一上期末联考试题含解析_第1页](http://file4.renrendoc.com/view12/M05/0B/18/wKhkGWcnsCOAY170AAGc9VTAmQw545.jpg)
![贵州省遵义市正安一中2025届数学高一上期末联考试题含解析_第2页](http://file4.renrendoc.com/view12/M05/0B/18/wKhkGWcnsCOAY170AAGc9VTAmQw5452.jpg)
![贵州省遵义市正安一中2025届数学高一上期末联考试题含解析_第3页](http://file4.renrendoc.com/view12/M05/0B/18/wKhkGWcnsCOAY170AAGc9VTAmQw5453.jpg)
![贵州省遵义市正安一中2025届数学高一上期末联考试题含解析_第4页](http://file4.renrendoc.com/view12/M05/0B/18/wKhkGWcnsCOAY170AAGc9VTAmQw5454.jpg)
![贵州省遵义市正安一中2025届数学高一上期末联考试题含解析_第5页](http://file4.renrendoc.com/view12/M05/0B/18/wKhkGWcnsCOAY170AAGc9VTAmQw5455.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省遵义市正安一中2025届数学高一上期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在R上为减函数,则实数a的取值范围是()A. B.C. D.2.设,则“”是“”的()条件A.必要不充分 B.充分不必要C.既不充分也不必要 D.充要3.已知且,则()A.有最小值 B.有最大值C.有最小值 D.有最大值4.设函数的定义域,函数的定义域为,则()A. B.C. D.5.要得到函数的图象,只需要将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位6.已知向量,,且,那么()A.2 B.-2C.6 D.-67.已知,,,则,,三者的大小关系是()A. B.C. D.8.如图,在正四棱柱中,,点为棱的中点,过,,三点的平面截正四棱柱所得的截面面积为()A.2 B.C. D.9.设集合,则()A. B.C. D.10.已知是第二象限角,且,则点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.设函数则的值为________12.已知为的外心,,,,且;当时,______;当时,_______.13.已知函数(,且)的图象恒过定点,且点在幂函数的图象上,则__________.14.函数的递增区间是__________________15.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.16.已知直线,直线若,则______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.解关于的不等式.18.如图为函数的一个周期内的图象.(1)求函数的解析式及单调递减区间;(2)当时,求的值域.19.已知函数为定义在R上的奇函数.(1)求实数a的值;(2)判断函数的单调性,并证明;20.已知函数(1)若不等式的解集为,求的值;(2)当时,求关于的不等式的解集21.已知函数的一系列对应值如下表:(1)根据表格提供的数据求函数的一个解析式;(2)根据(1)的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据分段函数单调性,可得关于的不等式组,解不等式组即可确定的取值范围.【详解】函数在R上为减函数所以满足解不等式组可得.故选:D【点睛】本题考查了分段函数单调性的应用,根据分段函数的单调性求参数的取值范围,属于中档题.2、B【解析】根据充分条件与必要条件的概念,可直接得出结果.【详解】若,则,所以“”是“”的充分条件;若,则或,所以“”不是“”的必要条件;因此,“”是“”的充分不必要条件.故选:B【点睛】本题主要考查充分不必要条件的判定,熟记概念即可,属于基础题型.3、A【解析】根据,变形为,再利用不等式的基本性质得到,进而得到,然后由,利用基本不等式求解.【详解】因为,所以,所以,所以,所以,所以,当且仅当时取等号,故选:A.【点睛】思路点睛:本题思路是利用分离常数法转化为,再由,利用不等式的性质构造,再利用基本不等式求解.4、B【解析】求出两个函数的定义域后可求两者的交集.【详解】由得,由得,故,故选:B.【点睛】本题考查函数的定义域和集合的交,函数的定义域一般从以下几个方面考虑:(1)分式的分母不为零;(2)偶次根号(,为偶数)中,;(3)零的零次方没有意义;(4)对数的真数大于零,底数大于零且不为1.5、B【解析】因为函数,要得到函数的图象,只需要将函数的图象向右平移个单位本题选择B选项.点睛:三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同6、B【解析】根据向量共线的坐标表示,列出关于m的方程,解得答案.【详解】由向量,,且,可得:,故选:B7、C【解析】分别求出,,的范围,即可比较大小.【详解】因为在上单调递增,所以,即,因为在上单调递减,所以,即,因为在单调递增,所以,即,所以,故选:C8、D【解析】根据题意画出截面,得到截面为菱形,从而可求出截面的面积.【详解】取的中点,的中点,连接,因为该几何体为正四棱柱,∴故四边形为平行四边形,所以,又,∴,同理,且,所以过,,三点平面截正四棱柱所得的截面为菱形,所以该菱形的面积为.故选:D9、B【解析】根据交集定义运算即可【详解】因为,所以,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.10、B【解析】根据所在象限可判断出,,从而可得答案.【详解】为第二象限角,,,则点位于第二象限.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接利用分段函数解析式,先求出的值,从而可得的值.【详解】因为函数,所以,则,故答案为.【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.12、(1).(2).【解析】(1)由可得出为的中点,可知为外接圆的直径,利用锐角三角函数的定义可求出;(2)推导出外心的数量积性质,,由题意得出关于、和的方程组,求出的值,再利用向量夹角的余弦公式可求出的值.【详解】当时,由可得,,所以,为外接圆的直径,则,此时;如下图所示:取的中点,连接,则,所,,同理可得.所以,,整理得,解得,,,因此,.故答案为:;.【点睛】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出,,并以此建立方程组求解,计算量大,属于难题.13、【解析】先求出定点的坐标,再代入幂函数,即可求出解析式.【详解】令可得,此时,所以函数(,且)的图象恒过定点,设幂函数,则,解得,所以,故答案为:【点睛】关键点点睛:本题的关键点是利用指数函数的性质和图象的特点得出,设幂函数,代入即可求得,.14、【解析】由已知有,解得,即函数的定义域为,又是开口向下的二次函数,对称轴,所以的单调递增区间为,又因为函数以2为底的对数型函数,是增函数,所以函数的递增区间为点睛:本题主要考查复合函数的单调区间,属于易错题.在求对数型函数的单调区间时,一定要注意定义域15、2【解析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.16、【解析】由两条直线垂直,可得,解方程即可求解.详解】若,则,解得,故答案为:【点睛】本题考查了由两条直线互相垂直,求参数的范围,熟练掌握直线垂直的充要条件是解题的关键,考查了运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、答案见解析【解析】不等式等价于,再分,和三种情况讨论解不等式.【详解】原不等式可化为,即,①当,即时,;②当,即时,原不等式的解集为;③当,即时,.综上知:当时,原不等式的解集为;当时,原不等式的解集为;当时原不等式的解集为.18、(1),;(2).【解析】(1)由图可求出,令,即可求出单调递减区间;(2)由题可得,则可求得值域.【详解】(1)由题图,知,所以,所以.将点(-1,0)代入,得.因为,所以,所以.令,得.所以的单调递减区间为.(2)当时,,此时,则,即的值域为.【点睛】方法点睛:根据三角函数部分图象求解析式方法:(1)根据图象的最值可求出A;(2)求出函数的周期,利用求出;(3)取点代入函数可求得.19、(1);(2)是R上的增函数,证明详见解析.【解析】(1)由奇函数定义可解得;(2)是上的增函数,可用定义证明.【详解】(1)因为为定义在上的奇函数,所以对任意,,即,所以,因为,所以,即.(2)由(1)知,则是上的增函数,下用定义证明.任取,且,,当时,,又,所以,即,故是上的增函数.20、(1);(2)见解析.【解析】(1)根据二次不等式解集与二次函数图像的关系即可求出a的取值;(2)根据二次函数图像的性质即可分类讨论解不等式.【小问1详解】不等式即,可化为因为的解集是,所以且解得;【小问2详解】不等式即,因为,所以不等式可化为当时,即,原不等式的解集当时,即,原不等式的解集为当时即原不等式的解集.综上所述,当时,原不等式的解;当时,原不等式的解集为;当时,原不等式的解集.21、(1)(2)【解析】(1)根据表格提供的数据画出函数图象,求出、和、的值,写出的解析式即可;(2)由函数的最小正周期求出的值,再利用换元法,令,结合函数的图象求出方程恰有两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生态农业模式在办公环境中的应用研究
- 现代教育技术在课堂管理中的应用
- 7 信息的交流传播 说课稿-2024-2025学年科学六年级上册教科版
- 现代医疗物资供应链管理的挑战与对策研究
- 生产设备维护与提高产品质量的关系研究
- 物流配送成本控制的电子商务策略
- 现代金融变革移动支付在全球的推广与应用
- 现代办公环境下的稳固结构设计探索
- 物联网数据传输技术在绿色能源领域的应用
- 环保理念在建筑设计中的体现与实践
- 自卸车司机实操培训考核表
- 教师个人基本信息登记表
- 中考现代文阅读理解题精选及答案共20篇
- ESD测试作业指导书-防静电手环
- 高频变压器的制作流程
- 春季开学安全第一课PPT、中小学开学第一课教育培训主题班会PPT模板
- JJG30-2012通用卡尺检定规程
- 部编版人教版二年级上册语文教材分析
- 艾宾浩斯遗忘曲线复习方法表格模板100天
- APR版制作流程
- 《C++程序设计》完整教案
评论
0/150
提交评论