江苏省南通市启东中学创新班2025届高二数学第一学期期末经典试题含解析_第1页
江苏省南通市启东中学创新班2025届高二数学第一学期期末经典试题含解析_第2页
江苏省南通市启东中学创新班2025届高二数学第一学期期末经典试题含解析_第3页
江苏省南通市启东中学创新班2025届高二数学第一学期期末经典试题含解析_第4页
江苏省南通市启东中学创新班2025届高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通市启东中学创新班2025届高二数学第一学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左顶点为,上顶点为,右焦点为,若,则椭圆的离心率的取值范围是()A. B.C. D.2.观察下列各式:,,,,,可以得出的一般结论是A.B.C.D.3.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或4.设、是向量,命题“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则5.已知球O的半径为2,球心到平面的距离为1,则球O被平面截得的截面面积为()A. B.C. D.6.设函数在R上可导,则()A. B.C. D.以上都不对7.已知直线:和:,若,则实数的值为()A. B.3C.-1或3 D.-18.在等差数列中,,则的公差为()A.1 B.2C.3 D.49.已知函数,则()A. B.0C. D.110.等差数列中,,则()A. B.C. D.11.如图,在四棱锥中,平面,,,则点到直线的距离为()A. B.C. D.212.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.无穷数列满足:只要必有则称为“和谐递进数列”.已知为“和谐递进数列”,且前四项成等比数列,,则=_________.14.已知点在抛物线上,那么点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为______15.已知向量,,若,则实数m的值是___________.16.已知,动点满足,则点的轨迹方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为等差数列,是公比为2的等比数列,且满足(1)求数列和的通项公式;(2)令求数列的前n项和;18.(12分)某校高三年级进行了一次数学测试,全年级学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若(1)求a,b的值;(2)若成绩落在区间内的人数为36人,请估计该校高三学生的人数19.(12分)新高考取消文理分科,采用选科模式,这赋予了学生充分的自由选择权.新高考地区某校为了解本校高一年级将来高考选考物理的情况,随机选取了100名高一学生,将他们某次物理测试成绩(满分100分)按照,,,,分成5组,制成如图所示的频率分布直方图.(1)求图中的值并估计这100名学生本次物理测试成绩的中位数.(2)根据调查,本次物理测试成绩不低于60分的学生,高考将选考物理科目;成绩低于60分的学生,高考将不选考物理科目.按分层抽样的方法从测试成绩在,的学生中选取5人,再从这5人中任意选取2人,求这2人中至少有1人高考选考物理科目的概率.20.(12分)如图,在四棱锥P-ABCD中,底面四边形ABCD为直角梯形,,,,O为BD的中点,,(1)证明:平面ABCD;(2)求平面PAD与平面PBC所成锐二面角的余弦值21.(12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.22.(10分)已知函数(1)当时,求函数的极值;(2)当时,若恒成立,求实数a的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意得到,根据,化简得到,进而得到离心率的不等式,即可求解.【详解】由题意,椭圆的左顶点为,上顶点为,所以,,因为,可得,即,又由,可得,可得,解得,又因为椭圆的离心率,所以,即椭圆的离心率为.故选:B.【点睛】求解椭圆或双曲线离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.2、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以归纳:左边每一个式子均有2n-1项,且第一项为n,则最后一项为3n-2右边均为2n-1的平方故选C点睛:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想)3、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程为,故选:D﹒4、C【解析】利用原命题与逆否命题之间的关系可得结论.【详解】由原命题与逆否命题之间的关系可知,命题“若,则”的逆否命题是“若,则”.故选:C.5、B【解析】根据球的性质可求出截面圆的半径即可求解.【详解】由球的性质可知,截面圆的半径为,所以截面的面积.故选:B6、B【解析】根据极限的定义计算【详解】由题意故选:B7、D【解析】利用两直线平行列式求出a值,再验证即可判断作答.【详解】因,则,解得或,当时,与重合,不符合题意,当时,,符合题意,所以实数的值为-1.故选:D8、A【解析】根据等差数列性质可得方程组,求得公差.【详解】等差数列中,,,由通项公式可得解得故选:A9、B【解析】先求导,再代入求值.详解】,所以.故选:B10、C【解析】由等差数列的前项和公式和性质进行求解.【详解】由题意,得.故选:C.11、A【解析】如图,以为坐标原点,建立空间直角坐标系,然后利用空间向量求解即可【详解】因为平面,平面,平面,所以,,因为所以如图,以为坐标原点,建立空间直角坐标系,则,,,,,即.在上的投影向量的长度为,故点到直线的距离为.故选:A12、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、7578【解析】根据新定义得数列是周期数列,从而易求得【详解】∵成等比数列,,∴,又,为“和谐递进数列”,∴,,,,…,∴数列是周期数列,周期为4∴故答案为:757814、【解析】由抛物线定义可得,由此可知当为与抛物线的交点时,取得最小值,进而求得点坐标.【详解】由题意得:抛物线焦点为,准线为作,垂直于准线,如下图所示:由抛物线定义知:(当且仅当三点共线时取等号)即的最小值为,此时为与抛物线的交点故答案为【点睛】本题考查抛物线线上的点到焦点的距离与到定点距离之和最小的相关问题的求解,关键是能够熟练应用抛物线定义确定最值取得的位置.15、【解析】结合已知条件和空间向量的数量积的坐标公式即可求解.【详解】因为,所以,解得.故答案为:.16、【解析】表示出、,根据题意,列出等式,化简整理即可得答案.【详解】,由题意得,所以整理可得,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据等差数列和等比数列通项公式得到,根据通项公式的求法得到结果;(2)分组求和即可.【小问1详解】设的公差为,由已知,有解得,所以的通项公式为,的通项公式为.【小问2详解】,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:.18、(1)(2)人【解析】(1)由频率分布直方图的性质求得,结合,即可求得的值;(2)由频率分布直方图求得落在区间内的概率,进而求得该校高三年级的人数【小问1详解】解:由频率分布直方图的性质,可得:,可得,又由,可得解得;【小问2详解】解:由频率分布直方图可得,成绩落在区间内的概率为,则该校高三年级的人数为(人)19、(1),中位数为;(2).【解析】(1)由频率和为1求参数a,根据直方图及中位数性质求中位数即可.(2)首先由分层抽样原则求选取的5人在、的人数分布情况,再应用列举法求古典概型的概率即可.【小问1详解】由图知:,解得.学生成绩在的频率为;学生成绩在的频率为.设这100名学生本次物理测试成绩的中位数为,则,解得,故估计这100名学生本次物理测试成绩的中位数为.【小问2详解】由(1)知,学生成绩在的频数为,学生成绩在的频数为.按分层抽样的方法从中选取5人,则成绩在的学生被抽取人,分别记为,,成绩在的学生被抽取人,分别记为,,.从中任意选取2人,有,,,,,,,,,这10种选法,其中至少有1人高考选考物理科目的选法有,,,,,,,,这9种,∴这2人中至少有1人高考选考物理科目的概率.20、(1)见解析(2)【解析】(1)连接,利用勾股定理证明,又可证明,根据线面垂直的判定定理证明即可;(2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面和平面的法向量,由向量的夹角公式求解即可小问1详解】证明:如图,连接,在中,由,可得,因为,,所以,,因为,,,则,故,因为,,,平面,则平面;【小问2详解】解:由(1)可知,,,两两垂直,以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,0,,,2,,,0,,所以,则,,,又,设平面的法向量为,则,令,则,,故,设平面的法向量为,因为,所以,令,则,,故,所以,故平面与平面所成锐二面角的余弦值为21、(1);(2)1400(元).【解析】(1)根据已知条件即可容易求得函数关系式;(2)根据(1)中所求函数关系式,令,求得函数值即可.【小问1详解】根据题意,得:当时,;当时,;当时,.即.【小问2详解】因为,故,故该厂应缴纳污水处理费1400元.22、(1)极大值;极小值(2)【解析】(1)利用导数来求得的极大值和极小值.(2)由不等式分离常数,通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论