版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
轴对称-重难点题型【知识点1轴对称与轴对称图形】(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.【题型1轴对称图形的识别】【例1】(炎陵县期末)围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑白棋子摆成的图案是轴对称图形的是()A. B. C. D.【变式1-1】(双峰县期末)如图四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是轴对称图形的是()A. B. C. D.【变式1-2】(盐湖区校级期末)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是()A.B. C. D.【变式1-3】(黄岛区一模)第24届冬季奥林匹克运动会,将于2022年2月在我国北京市和张家口市联合举行,在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.B. C. D.【题型2生活中的轴对称现象】【例2】(淮南期中)如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋 B.2号袋 C.3号袋 D.4号袋【变式2-1】(兖州区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时入射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……第2020次碰到长方形边上的点为图中的()A.A点 B.B点 C.C点 D.D点【变式2-2】(沙坪坝区校级期中)小明从镜子中看到电子钟显示的时间是20:51,那么实际时间为.【变式2-3】(吉安县期末)室内墙壁上挂一平面镜,明敏在平面镜内看到他背后墙上的时钟如图,则这时的实际时间是.【知识点2轴对称的性质】(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.【题型3利用轴对称的性质求角度】【例3】(沙坪坝区校级期中)如图,△AOB与△COB关于边OB所在的直线成轴对称,AO的延长线交BC于点D.若∠BOD=46°,∠C=20°,则∠ADC=°.【变式3-1】(汉台区期末)如图,∠MON内有一点P,点P关于OM的轴对称点是G,点P关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=.【变式3-2】(雁塔区校级期末)如图,点P为∠AOB内一点,分别作出P点关于OB、OA的对称点P1,P2,连接P1P2交OB于M,交OA于N,若∠AOB=40°,则∠MPN的度数是()A.90° B.100° C.120° D.140°【变式3-3】(射阳县校级模拟)如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40° B.45° C.60° D.80°【题型4利用轴对称的性质求线段】【例4】(深圳模拟)如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=7,AC=9,BC=12,则△DBE的周长为()A.9 B.10 C.11 D.12【变式4-1】(海口期末)如图所示,点P关于直线OA、OB的对称点分别为C、D,连接CD,交OA于M,交OB于N,若△PMN的周长为8cm,则CD为cm.【变式4-2】(驿城区期末)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=3cm,PN=4cm,MN=4.5cm,则线段QR的长为.【变式4-3】(双流区校级期末)如图,△ABC中,∠ACB=90°,BC=6,AC=8,AB=10,动点P在边AB上运动(不与端点重合),点P关于直线AC,BC对称的点分别为P1,P2.则在点P的运动过程中,线段P1P2的长的最小值是.【题型5利用轴对称的性质解折叠问题】【例5】(锦江区期末)如图,在△ABC中,∠ACB=90°,D是AC上一点,连接BD,将△BDA沿BD对折得到△BDE,若BE恰好经过点C,则下列结论错误的是()A.DA=DE B.∠CDE=2∠ABD C.∠BDE﹣∠ABD=90° D.S△ABD:S△CDE=BC:CE【变式5-1】(于洪区期末)如图,△ABC中,∠ACB=90°,将△ABC沿着一条直线折叠后,使点A与点C重合(如图②)(1)在图①中画出折痕所在的直线l,问直线l是线段AC的中垂线;(2)设直线l与AB、AC分别相交于点M、N,连接CM,若△CMB的周长是21cm,AB=14cm,求BC的长.【变式5-2】(启东市开学)如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,【变式5-3】(建邺区期末)ABCD是长方形纸片的四个顶点,点E、F、H分别边AD、BC、AD上的三点,连接EF、FH.(1)将长方形纸片的ABCD按如图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′,点B′在FC′上,则∠EFH的度数为;(2)将长方形纸片的ABCD按如图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D'(B′、C′的位置如图所示),若∠B'FC′=16°,求∠EFH的度数;(3)将长方形纸片的ABCD按如图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′,D′(B′、C′的位置如图所示).若∠EFH=n°,则∠B′FC′的度数为.【题型6剪纸问题】【例6】(门头沟区二模)有一正方形卡纸,如图①,沿虚线向上翻折,得到图②,再沿虚线向右翻折得到图③,沿虚线将一角剪掉后展开,得到的图形是()A. B. C. D.【变式6-1】(恩施市期末)将一张正方形按图1,图2方式折叠,然后用剪刀沿图3中虚线剪掉一角,再将纸片展开铺平后得到的图形是()A. B. C. D.【变式6-2】(石景山区期末)剪纸是我国传统的民间艺术.如图①,②将一张纸片进行两次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A. B. C. D.【变式6-3】(邢台三模)一张正方形纸片按图1、图2箭头方向依次对折后,再沿图3虚线裁剪得到图4,把图4展开铺平的图案应是()A. B. C. D.
轴对称-重难点题型【知识点1轴对称与轴对称图形】(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.【题型1轴对称图形的识别】【例1】(炎陵县期末)围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑白棋子摆成的图案是轴对称图形的是()A. B. C. D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,利用轴对称图形的定义进行解答即可.【解答】解:选项A、B、C均不能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D.【变式1-1】(双峰县期末)如图四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:选项A的标志内找到这样的一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;选项B、C、D中的标志内不能找到这样的一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合,所以它们不是轴对称图形;故选:A.【变式1-2】(盐湖区校级期末)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是()A.B. C. D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时也可以说这个图形关于这条直线(成轴)对称.【解答】解:观察图形可知,选项D是轴对称图形,A,B,C选项不是轴对称图形.故选:D.【变式1-3】(黄岛区一模)第24届冬季奥林匹克运动会,将于2022年2月在我国北京市和张家口市联合举行,在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.B. C. D.【分析】结合轴对称图形的概念进行求解即可.【解答】解:A、是轴对称图形,本选项不合题意;B、是轴对称图形,本选项不合题意;C、是轴对称图形,本选项不合题意;D、不是轴对称图形,本选项符合题意.故选:D.【题型2生活中的轴对称现象】【例2】(淮南期中)如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋 B.2号袋 C.3号袋 D.4号袋【分析】利用轴对称画出图形即可.【解答】解:如图所示:,该球最后落入的球袋是4号袋,故选:D.【变式2-1】(兖州区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时入射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……第2020次碰到长方形边上的点为图中的()A.A点 B.B点 C.C点 D.D点【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图所示,经过6次反弹后动点回到出发点P,∵2020÷6=336…4,∴当点P第2020次碰到长方形的边时为第337个循环组的第4次反弹,∴第2020次碰到长方形的边时的点为图中的点D,故选:D.【变式2-2】(沙坪坝区校级期中)小明从镜子中看到电子钟显示的时间是20:51,那么实际时间为.【分析】用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的时刻与20:51成轴对称,所以此时实际时刻为12:05.故答案为:12:05.【变式2-3】(吉安县期末)室内墙壁上挂一平面镜,明敏在平面镜内看到他背后墙上的时钟如图,则这时的实际时间是.【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好左右颠倒,且关于镜面对称,分析并作答.【解答】解:根据镜面对称的性质,分析可得题中所显示的时刻与3:40成轴对称,所以此时实际时刻为:3:40.故答案为:3:40.【知识点2轴对称的性质】(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.【题型3利用轴对称的性质求角度】【例3】(沙坪坝区校级期中)如图,△AOB与△COB关于边OB所在的直线成轴对称,AO的延长线交BC于点D.若∠BOD=46°,∠C=20°,则∠ADC=°.【分析】根据∠ADC=∠A+∠ABD,求出∠A,∠ABD即可.【解答】解:∵△AOB与△COB关于边OB所在的直线成轴对称,∴△AOB≌△COB,∴∠A=∠C=20°,∠ABO=∠CBO,∵∠BOD=∠A+∠ABO,∴∠ABO=∠BOD﹣∠ABO=46°﹣20°=26°,∴∠ABD=2∠ABO=52°,∴∠ADC=∠A+∠ABD=20°+52°=72°,故答案为:72.【变式3-1】(汉台区期末)如图,∠MON内有一点P,点P关于OM的轴对称点是G,点P关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=.【分析】连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=35°,∴∠GOH=2×35°=70°.故答案为:70°.【变式3-2】(雁塔区校级期末)如图,点P为∠AOB内一点,分别作出P点关于OB、OA的对称点P1,P2,连接P1P2交OB于M,交OA于N,若∠AOB=40°,则∠MPN的度数是()A.90° B.100° C.120° D.140°【分析】首先证明∠P1+∠P2=40°,可得∠PMN=∠P1+∠MPP1=2∠P1,∠PNM=∠P2+∠NPP2=2∠P2,推出∠PMN+∠PNM=2×40°=80°,可得结论.【解答】解:∵P点关于OB的对称点是P1,P点关于OA的对称点是P2,∴PM=P1M,PN=P2N,∠P2=∠P2PN,∠P1=∠P1PM,∵∠AOB=40°,∴∠P2PP1=140°,∴∠P1+∠P2=40°,∴∠PMN=∠P1+∠MPP1=2∠P1,∠PNM=∠P2+∠NPP2=2∠P2,∴∠PMN+∠PNM=2×40°=80°,∴∠MPN=180°﹣(∠PMN+∠PNM)=180°﹣80°=100°,故选:B.【变式3-3】(射阳县校级模拟)如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40° B.45° C.60° D.80°【分析】连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE=12∠BAD,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°−1【解答】解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=12∠又∵∠AEC=90°,∴∠ACB=∠ACB'=40°,故选:A.【题型4利用轴对称的性质求线段】【例4】(深圳模拟)如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=7,AC=9,BC=12,则△DBE的周长为()A.9 B.10 C.11 D.12【分析】根据轴对称的性质得到:AD=DE,AC=CE,结合已知条件和三角形周长公式解答.【解答】解:∵点A与点E关于直线CD对称,∴AD=DE,AC=CE=9,∵AB=7,AC=9,BC=12,∴△DBE的周长=BD+DE+BE=BD+AD+BC﹣AC=AB+BC﹣AC=7+12﹣9=10.故选:B.【变式4-1】(海口期末)如图所示,点P关于直线OA、OB的对称点分别为C、D,连接CD,交OA于M,交OB于N,若△PMN的周长为8cm,则CD为cm.【分析】由轴对称的性质可知PM=CM,PN=DN,再由△PMN的周长为8cm,即可求得CD的长度.【解答】解:∵点P关于直线OA、OB的对称点分别为C、D,∴PM=CM,PN=DN,∴PN+PN+MN=CM+DN+MN,∴△PMN的周长=CD,∵△PMN的周长为8cm,∴CD=8cm,故答案为:8.【变式4-2】(驿城区期末)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=3cm,PN=4cm,MN=4.5cm,则线段QR的长为.【分析】根据轴对称的性质得到OA垂直平分PQ,OB垂直平分PR,则利用线段垂直平分线的性质得QM=PM=3cm,RN=PN=4cm,然后计算QN,再计算QN+RN即可.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,∴OA垂直平分PQ,∴QM=PM=3cm,∴QN=MN﹣QM=4.5cm﹣3cm=1.5cm,∵点P关于OB的对称点R落在MN的延长线上,∴OB垂直平分PR,∴RN=PN=4cm,∴QR=QN+RN=1.5cm+4cm=5.5cm.故答案为5.5cm.【变式4-3】(双流区校级期末)如图,△ABC中,∠ACB=90°,BC=6,AC=8,AB=10,动点P在边AB上运动(不与端点重合),点P关于直线AC,BC对称的点分别为P1,P2.则在点P的运动过程中,线段P1P2的长的最小值是.【分析】连接CP,依据轴对称的性质,即可得到线段P1P2的长等于2CP,依据CP的最小值即可得出线段P1P2的长的最小值.【解答】解:如图,连接CP,∵点P关于直线AC,BC对称的点分别为P1,P2,∴P1C=PC=P2C,∴线段P1P2的长等于2CP,如图所示,当CP⊥AB时,CP的长最小,此时线段P1P2的长最小,∵∠ACB=90°,BC=6,AC=8,AB=10,∴CP=AC×BC∴线段P1P2的长的最小值是9.6,故答案为:9.6.【题型5利用轴对称的性质解折叠问题】【例5】(锦江区期末)如图,在△ABC中,∠ACB=90°,D是AC上一点,连接BD,将△BDA沿BD对折得到△BDE,若BE恰好经过点C,则下列结论错误的是()A.DA=DE B.∠CDE=2∠ABD C.∠BDE﹣∠ABD=90° D.S△ABD:S△CDE=BC:CE【分析】由折叠的性质直接判断A;由折叠的性质得到△ABC≌△EBF及△FBD≌△CBD,进而得出BC=BF,∠DCB=∠DFB=90°,DF=DC,根据直角三角形的两锐角互余即可判断B;根据角的和差判断C;再根据三角形的面积公式判断D.【解答】解:如图,延长ED交AB于点F,∵△BDA沿BD对折得到△BDE,∴△BDA≌△BDE,∴∠ABD=∠DBE,DA=DE,故A正确,不符合题意;由△BDA≌△BDE可知,∠A=∠E,AB=BE,在△ABC和△EBF中,∠A=∠EAB=EB∴△ABC≌△EBF(ASA),∴BC=BF,在△FBD和△CBD中,BF=BC∠DBF=∠DBC∴△FBD≌△CBD(SAS),∴∠DCB=∠DFB=90°,DF=DC,∴∠ABC=∠CDE,∴∠CDE=2∠ABD,故B正确,不符合题意;∵∠BDE=∠BDC+∠CDE=∠BDC+2∠ABD,∴∠BDE﹣∠ABD=∠BDC+2∠ABD﹣∠ABD=∠BDC+∠ABD=∠BDC+∠DBC=90°,故C正确,不符合题意;S△ABD=12•AB•DF,S△CDE=12•∴S△ABD故D错误,符合题意;故选:D.【变式5-1】(于洪区期末)如图,△ABC中,∠ACB=90°,将△ABC沿着一条直线折叠后,使点A与点C重合(如图②)(1)在图①中画出折痕所在的直线l,问直线l是线段AC的中垂线;(2)设直线l与AB、AC分别相交于点M、N,连接CM,若△CMB的周长是21cm,AB=14cm,求BC的长.【分析】(1)由折叠的性质可得AN=NC,∠ANM=∠CNM=90°,即直线l是线段AC的中垂线;(2)由折叠的性质可得AM=CM,即可求BC的长.【解答】解:(1)如图①,∵将△ABC沿着一条直线折叠后,使点A与点C重合,∴AN=NC,∠ANM=∠CNM=90°,∴直线l是线段AC的中垂线,故答案为:中垂;(2)∵将△ABC沿着一条直线折叠后,使点A与点C重合,∴AM=CM,∵△CMB的周长是21cm,AB=14cm,∴21=CM+BM+BC=AM+BM+CB=AB+BC=14+BC,∴BC=7cm.【变式5-2】(启东市开学)如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,【分析】通过延长CF,将DE和BF放在一起,便于寻找等量关系,通过两次三角形全等证明,得出结论.【解答】猜想:DE+BF=EF.证明:延长CF,作∠4=∠1,如图:∵将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12∠∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF=∠FAE,在△AGB和△AED中,∠4=∠1AB=AD∴△AGB≌△AED(ASA),∴AG=AE,BG=DE,在△AGF和△AEF中,AG=AE∠GAF=∠EAF∴△AGF≌△AEF(SAS),∴GF=EF,∴DE+BF=EF.证毕.【变式5-3】(建邺区期末)ABCD是长方形纸片的四个顶点,点E、F、H分别边AD、BC、AD上的三点,连接EF、FH.(1)将长方形纸片的ABCD按如图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′,点B′在FC′上,则∠EFH的度数为;(2)将长方形纸片的ABCD按如图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D'(B′、C′的位置如图所示),若∠B'FC′=16°,求∠EFH的度数;(3)将长方形纸片的ABCD按如图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′,D′(B′、C′的位置如图所示).若∠EFH=n°,则∠B′FC′的度数为.【分析】(1)由折叠可得∠BFE=∠B′FE,∠CFH=∠C′FH,进而得出∴∠EFH=12(∠B′FB+∠C′(2)可设∠BFE=∠B′FE=x,∠CFH=∠C′FH=y,根据2x+16°+2y=180°,得出x+y=82°,进而得到∠EFH=x+16°+y=16°+82°=98°;(3)可设∠BFE=∠B′FE=x,∠CFH=∠C′FH=y,即可得到x+y=180°﹣n°,再根据∠EFH=∠B′FE+∠C′FH﹣∠B′FC′=x+y﹣∠B′FC′,即可得到∠B′FC′=x+y﹣∠EFH=180°﹣n°﹣n°=180°﹣2n°.【解答】解:(1)∵沿EF、FH折叠,∴∠BFE=∠B′FE,∠CFH=∠C′FH,∵点B′在C′
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游服务行业劳动合同样本
- 教育机构管理层合同范例3篇
- 数码产品交易合同案例3篇
- 安装合同范文集合3篇
- 居住证房屋租赁合同完整文本3篇
- 数据采集服务合作合同3篇
- 安徽电子政务劳动合同样本3篇
- 方木购销合同书格式3篇
- 安徽离婚协议书样式3篇
- 摄影器材维修合同范本3篇
- GB/T 45076-2024再生资源交易平台建设规范
- 10.2《师说》课件 2024-2025学年统编版高中语文必修上册
- 2024年度企业重组与债务重组协议3篇
- 年高考新课标I卷语文试题讲评课件
- 《三 采用合理的论证方法》教学设计统编版高中语文选择性必修上册
- 2024-2025学年语文二年级上册 部编版期末测试卷 (含答案)
- 职业技术学院无人机应用技术专业人才培养方案
- 神经病学第九版脑梗死
- 2024-2030年中国膏剂(膏方)行业竞争状况及营销前景预测报告版
- 国家太空安全
- 惠州学院《电机与拖动基础》2022-2023学年期末试卷
评论
0/150
提交评论