广东省东莞市第五高级中学2025届高二上数学期末质量检测模拟试题含解析_第1页
广东省东莞市第五高级中学2025届高二上数学期末质量检测模拟试题含解析_第2页
广东省东莞市第五高级中学2025届高二上数学期末质量检测模拟试题含解析_第3页
广东省东莞市第五高级中学2025届高二上数学期末质量检测模拟试题含解析_第4页
广东省东莞市第五高级中学2025届高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省东莞市第五高级中学2025届高二上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在三棱锥中,,,,点在平面内,且,设异面直线与所成角为,则的最大值为()A. B.C. D.2.在四面体OABC中,点M在线段OA上,且,N为BC中点,已知,,,则等于()A. B.C. D.3.已知函数,则()A.函数在上单调递增B.函数上有两个零点C.函数有极大值16D.函数有最小值4.在中,角,,所对的边分别为,,,若,,,则A. B.2C.3 D.5.已知,那么函数在x=π处的瞬时变化率为()A. B.0C. D.6.直线经过两个定点,,则直线倾斜角大小是()A. B.C. D.7.已知,则“”是“直线与平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知等差数列的公差,是与的等比中项,则()A. B.C. D.9.已知等比数列中,,,则首项()A. B.C. D.010.已知命题:,,命题:,,则()A.是假命题 B.是真命题C.是真命题 D.是假命题11.在正项等比数列中,,,则()A27 B.64C.81 D.25612.如图,将边长为4的正方形折成一个正四棱柱的侧面,则异面直线AK和LM所成角的大小为()A.30° B.45°C.60° D.90°二、填空题:本题共4小题,每小题5分,共20分。13.已知数列中,,,则_______.14.已知,则曲线在点处的切线方程是______.15.定义方程的实数根叫做函数的“新驻点”.(1)设,则在上的“新驻点”为___________;(2)如果函数与的“新驻点”分别为、,那么和的大小关系是___________.16.如图,把椭圆的长轴八等分,过每个分点作轴的垂线交椭圆的上半部分于,,,七个点,是椭圆的一个焦点,则的值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆的左、右焦点分别为,.点满足.(1)求椭圆的离心率;(2)设直线与椭圆相交于,两点,若直线与圆相交于,两点,且,求椭圆的方程.18.(12分)已知二项式的展开式中各二项式系数之和比各项系数之和小240.求:(1)n的值;(2)展开式中x项的系数;(3)展开式中所有含x的有理项19.(12分)已知向量,,且.(1)求满足上述条件的点M(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m(k≠0)相交于不同的两点P,Q,点A(0,1),当|AP|=|AQ|时,求实数m的取值范围.20.(12分)已知数列{an}为等差数列,且a1+a5=-12,a4+a8=0.(1)求数列{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的通项公式21.(12分)已知函数,其中,.(1)当时,求曲线在点处切线方程;(2)求函数的单调区间.22.(10分)已知动点在椭圆:()上,,为椭圆左、右焦点.过点作轴的垂线,垂足为,点满足,且点的轨迹是过点的圆(1)求椭圆方程;(2)过点,分别作平行直线和,设交椭圆于点,,交椭圆于点,,求四边形的面积的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设线段的中点为,连接,过点在平面内作,垂足为点,证明出平面,然后以点为坐标原点,、、分别为、、轴的正方向建立空间直角坐标系,设,其中,且,求出的最大值,利用空间向量法可求得的最大值.【详解】设线段的中点为,连接,,为的中点,则,,则,,同理可得,,,平面,过点在平面内作,垂足为点,因为,所以,为等边三角形,故为的中点,平面,平面,则,,,平面,以点为坐标原点,、、分别为、、轴的正方向建立如下图所示的空间直角坐标系,因为是边长为的等边三角形,为的中点,则,则、、、,由于点在平面内,可设,其中,且,从而,因为,则,所以,,故当时,有最大值,即,故,即有最大值,所以,.故选:D.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.2、B【解析】根据空间向量基本定理结合已知条件求解【详解】因为N为BC中点,所以,因为M在线段OA上,且,所以,所以,故选:B3、C【解析】对求导,研究的单调性以及极值,再结合选项即可得到答案.【详解】,由,得或,由,得,所以在上递增,在上递减,在上递增,所以极大值为,极小值为,所以有3个零点,且无最小值.故选:C4、A【解析】利用正弦定理,可直接求出的值.【详解】在中,由正弦定理得,所以,故选A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题5、A【解析】利用导数运算法则求出,根据导数的定义即可得到结论【详解】由题设,,所以,函数在x=π处瞬时变化率为,故选:A6、A【解析】由两点坐标求出斜率,再得倾斜角【详解】由已知直线的斜率为,所以倾斜角为故选:A7、A【解析】首先由两直线平行的充要条件求出参数的取值,再根据充分条件、必要条件的定义判断即可;【详解】因为直线与平行,所以,解得或,所以“”是“直线与平行”的充分不必要条件.故选:A.8、C【解析】由等比中项的性质及等差数列通项公式可得即可求.【详解】由,则,可得.故选:C.9、B【解析】设等比数列的公比为q,根据等比数列的通项公式,列出方程组,即可求得,进而可求得答案.【详解】设等比数列公比为q,则,解得,所以.故选:B10、C【解析】先分别判断命题、的真假,再利用逻辑联结词“或”与“且”判断命题的真假.【详解】由题意,,所以,成立,即命题为真命题,,所以不存在,使得,即命题为假命题,所以是假命题,为真命题,所以是真命题,是假命题,是假命题,是真命题.故选:C11、C【解析】根据等比数列的通项公式求出公比,进而求得答案.【详解】设的公比为,则(负值舍去),所以.故选:C.12、D【解析】作出折叠后的正四棱锥,确定线面关系,从而把异面直线的夹角通过平移放到一个平面内求得.【详解】由题知,折叠后的正四棱锥如图所示,易知K为的四等分点,L为的中点,M为的四等分点,,取的中点N,易证,则异面直线AK和LM所成角即直线AK和KN所成角,在中,,,故故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据递推公式一一计算即可;【详解】解:因为,所以,,,故答案为:14、【解析】求导,得到,写出切线方程.【详解】因为,所以,则,所以曲线在点处的切线方程是,即,故答案为:15、①.②.【解析】(1)根据“新驻点”的定义求得,结合可得出结果;(2)求出的值,利用零点存在定理判断所在的区间,进而可得出与的大小关系.详解】(1),,根据“新驻点”的定义得,即,可得,,解得,所以,函数在上的“新驻点”为;(2),则,根据“新驻点”的定义得,即.,则,由“新驻点”的定义得,即,构造函数,则函数在定义域上为增函数,,,,由零点存在定理可知,,.故答案为:(1);(2).【点睛】本题考查导数的计算,是新定义的题型,关键是理解“新驻点”的定义.16、28【解析】设椭圆的另一个焦点为由椭圆的几何性质可知:,同理可得,且,故,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由及两点间距离公式可建立等式,消去b,即可求解出,主要两个根的的要舍去;(2)联立直线和椭圆的方程,利用弦长公式求得,再利用几何关系求得,代入,可解得c,从而得到椭圆的方程.【详解】(1)设,,因为,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得椭圆方程为,直线的方程为,A,B两点的坐标满足方程组为,消去y并整理,得,解得:,,得方程组的解和,不妨设:,,所以,于是,圆心到直线的距离为,因为,所以,整理得:,得(舍),或,所以椭圆方程为:.【点睛】关键点点睛:本题考查求椭圆的离心率解题关键是找到关于a,b,c的等量关系,第二问的关键是联立直线与椭圆方程求出交点坐标,利用距离公式建立等量关系,求出c是求出椭圆方程的关键.18、(1)4(2)54(3)第1项,第3项,第5项【解析】(1)由题可得,解方程即得;(2)利用二项展开式的通项公式,即得;(3)利用二项展开式的通项公式,令,即求【小问1详解】由已知,得,即,所以或(舍),∴【小问2详解】设展开式的第项为令,得,则含x项的系数为【小问3详解】由(2)可知,令,则有,2,4,所以含x的有理项为第1项,第3项,第5项19、(1)+y2=1;(2).【解析】(1)应用向量垂直的坐标表示得x2+3y2=3,即可写出M的轨迹C的方程;(2)由直线与曲线C交于不同的两点P(x1,y1),Q(x2,y2),设直线y=kx+m(k≠0),联立方程整理所得方程有,且由根与系数关系用m,k表示x1+x2,x1x2,若N为PQ的中点结合|AP|=|AQ|知PQ⊥AN可得m、k的等量关系,结合即可求m的范围.【详解】(1)∵,即,∴,即有x2+3y2=3,即点M(x,y)的轨迹C的方程为+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲线C与直线y=kx+m(k≠0)相交于不同的两点,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.设P(x1,y1),Q(x2,y2),线段PQ的中点N(x0,y0),则.∵|AP|=|AQ|,即知PQ⊥AN,设kAN表示直线AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.将②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范围为.【点睛】思路点睛:1、由向量垂直,结合其坐标表示得到关于x,y的方程,写出曲线C的标准方程即可.2、由直线与曲线C相交,联立方程有,由|AP|=|AQ|得直线的垂直关系,即斜率之积为-1,进而可求参数的范围.20、(1)an=2n-12;(2).【解析】(1)根据等差数列的性质得到,然后根据等差数列的通项公式求出和的值即可.(2)根据(1)的条件求出b2=-24,b1=-8,然后根据等比数列的通项公式求出的值即可.【小问1详解】设等差数列{an}的公差为d,因为a1+a5=2a3=-12,a4+a8=2a6=0,所以,所以,解得,所以an=-10+2(n-1)=2n-12.【小问2详解】设等比数列{bn}的公比为q,因为b2=a1+a2+a3=-24,b1=-8,所以-8q=-24,即q=3,因此.21、(1);(2)答案见解析.【解析】(1)当时,,求出函数的导函数,再求出,,再利用点斜式求出切线方程;(2)首先求出函数的导函数,再对参数分类讨论,求出函数的单调区间;【详解】解:(1)当时,,所以,所以,,所以切线方程为:,即:(2)函数定义域为,,因为,①当时,在上恒成立,所以函数的单调递增区间为,无单调递减区间;②当时,由得,由得,所以函数的单调递增区间为,单调递减区间为【点睛】本题考查导数的几何意义,利用导数研究含参函数的单调区间,属于基础题.22、(1);(2)【解析】(1)设点和,由题意可得点的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论