版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省西安市新城区西安中学高二数学第一学期期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平行六面体中,与的交点为,设,则选项中与向量相等的是()A. B.C. D.2.若数列满足,则()A.2 B.6C.12 D.203.已知空间、、、四点共面,且其中任意三点均不共线,设为空间中任意一点,若,则()A.2 B.C.1 D.4.若双曲线一条渐近线被圆所截得的弦长为,则双曲线的离心率是()A. B.C. D.5.焦点为的抛物线标准方程是()A. B.C. D.6.命题“若,都是偶数,则也是偶数”的逆否命题是A.若是偶数,则与不都是偶数B.若是偶数,则与都不是偶数C.若不是偶数,则与不都是偶数D.若不是偶数,则与都不是偶数7.某研究所为了研究近几年中国留学生回国人数的情况,对2014至2018年留学生回国人数进行了统计,数据如下表:年份20142015201620172018年份代码12345留学生回国人数/万36.540.943.348.151.9根据上述统计数据求得留学生回国人数(单位:万)与年份代码满足的线性回归方程为,利用回归方程预测年留学生回国人数为()A.63.14万 B.64.72万C.66.81万 D.66.94万8.下列结论中正确的个数为()①,;②;③A.0 B.1C.2 D.39.某校开学“迎新”活动中要把3名男生,2名女生安排在5个岗位,每人安排一个岗位,每个岗位安排一人,其中甲岗位不能安排女生,则安排方法的种数为()A.72 B.56C.48 D.3610.若直线与直线垂直,则a=()A.-2 B.0C.0或-2 D.111.计算复数:()A. B.C. D.12.已知动点在直线上,过点作圆的切线,切点为,则线段的长度的最小值为()A. B.4C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将由2,5,8,11,14,…组成的等差数列,按顺序写在练习本上,已知每行写13个,每页有21行,则5555在第______页第______行.(用数字作答)14.已知点,则线段的垂直平分线的一般式方程为__________.15.已知等差数列满足,公差,则当的前n项和最大时,___________16.已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为____________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线过点,且其倾斜角是直线的倾斜角的(1)求直线的方程;(2)若直线与直线平行,且点到直线的距离是,求直线的方程18.(12分)已知椭圆,离心率分别为左右焦点,椭圆上一点满足,且的面积为1.(1)求椭圆的标准方程;(2)过点作斜率为的直线交椭圆于两点.过点且平行于的直线交椭圆于点,证明:为定值.19.(12分)已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2的周长为6,离心率等于.(1)求椭圆C的标准方程;(2)过点(4,0)的直线l交椭圆C于M、N两点,且OM⊥ON,求直线l的方程.20.(12分)一个长方体的平面展开图及该长方体的直观图的示意图如图所示(1)请将字母F,G,H标记在长方体相应的顶点处(不需说明理由):(2)若且有下面两个条件:①;②,请选择其中一个条件,使得DF⊥平面,并证明你的结论21.(12分)已知抛物线的焦点为,点在抛物线上,且点的纵坐标为4,(1)求抛物线的方程;(2)过点作直线交抛物线于两点,试问抛物线上是否存在定点使得直线与的斜率互为倒数?若存在求出点的坐标,若不存在说明理由22.(10分)如图,在四棱锥中,底面为矩形,平面平面,.(1)证明:平面平面;(2)若,为棱的中点,,,求二面角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用空间向量加减法、数乘的几何意义,结合几何体有,进而可知与向量相等的表达式.【详解】连接,如下图示:,.故选:B2、D【解析】由已知条件变形可得,然后累乘法可得,即可求出详解】由得,,.故选:D3、B【解析】根据空间四点共面的充要条件代入即可解决.【详解】,即整理得由、、、四点共面,且其中任意三点均不共线,可得,解之得故选:B4、A【解析】根据(为弦长,为圆半径,为圆心到直线的距离),求解出的关系式,结合求解出离心率的值.【详解】取的一条渐近线,因为(为弦长,为圆半径,为圆心到直线的距离),其中,所以,所以,所以,所以,所以,故选:A.【点睛】关键点点睛:解答本题的关键是利用几何法表示出圆的半径、圆心到直线的距离、半弦长之间的关系.5、D【解析】设抛物线的方程为,根据题意,得到,即可求解.【详解】由题意,设抛物线的方程为,因为抛物线的焦点为,可得,解得,所以抛物线的方程为.故选:D.6、C【解析】命题的逆否命题是将条件和结论对换后分别否定,因此“若都是偶数,则也是偶数”的逆否命题是若不是偶数,则与不都是偶数考点:四种命题7、D【解析】先求出样本点的中心,代入线性回归方程即可求出,再将代入线性回归方程即可得到结果【详解】由题意知:,,所以样本点的中心为,所以,解得:,可得线性回归方程为,年对应的年份代码为,令,则,所以预测2022年留学生回国人数为66.94万,故选:D.8、C【解析】构造函数利用导数说明函数的单调性,即可判断大小,从而得解;【详解】解:令,,则,所以在上单调递增,所以,即,即,,故①正确;令,,则,所以当时,,当时,,所以在上单调递减,在上单调递增,所以,即恒成立,所以,故②正确;令,,当时,当时,所以在上单调递减,在上单调递增,所以,即,所以,当且仅当时取等号,故③错误;故选:C9、A【解析】以位置优先法去安排即可解决.【详解】第一步:安排甲岗位,由3名男生中任选1人,有3种方法;第二步:安排余下的4个岗位,由2名女生和余下的2名男生任意安排即可,有种方法故安排方法的种数为故选:A10、C【解析】代入两直线垂直的公式,即可求解.【详解】因为两直线垂直,所以,解得:或.故选:C11、D【解析】直接利用复数代数形式的乘除运算化简可得结论.【详解】故选:D.12、A【解析】求出的最小值,由切线长公式可结论【详解】解:由,得最小时,最小,而,所以故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、①.7②.17【解析】首先求出等差数列的通项公式,即可得到为第项,再根据每行每页的项数计算可得;【详解】解:由2,5,8,11,14,…组成的等差数列的通项公式为,令,解得又,,.所以555在第7页第17行故答案为:;14、【解析】由中点坐标公式和斜率公式可得的中点和直线斜率,由垂直关系可得垂直平分线的斜率,由点斜式可得直线方程,化为一般式即可【详解】由中点坐标公式可得,的中点为,可得直线的斜率为,由垂直关系可得其垂直平分线的斜率为,故可得所求直线的方程为:,化为一般式可得故答案为:15、3【解析】根据公式求出前n项和,再利用二次函数的性质.【详解】因为等差数列,,所以,当时,取到最大值.故答案为:3.16、【解析】依题意,设所求的双曲线的方程为.点为该双曲线上的点,.该双曲线的方程为:,即.故本题正确答案是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)先求得直线的倾斜角,由此求得直线的倾斜角和斜率,进而求得直线的方程;(2)设出直线的方程,根据点到直线的距离列方程,由此求解出直线的方程【详解】解(1)直线的倾斜角为,∴直线的倾斜角为,斜率为,又直线过点,∴直线的方程为,即;(2)设直线的方程为,则点到直线的距离,解得或∴直线的方程为或18、(1)(2)证明见解析【解析】(1)方法一:根据离心率以及,可得出,将条件转化为点在以为直径的圆上,即为圆与椭圆的交点,将的面积用表示,求出,进而求出椭圆的标准方程;方法二:根据椭圆的定义,,再根据勾股定理和直角三角形的面积公式,即可解得,又由离心率求出,则可求出椭圆的标准方程;(2)设出直线的方程,代入椭圆方程,根据韦达定理表示出,再将直线的方程代入椭圆方程,求出,则为定值.【小问1详解】方法一:由离心率,得:,所以椭圆上一点,满足,所以点为圆:与椭圆的交点,联立方程组解得所以,解得:,所以椭圆的标准方程为:.方法二:由椭圆定义;,因为,所以,得到:,即,又,得所以椭圆C的标准方程为:;【小问2详解】设直线AB的方程为:.得设过点且平行于的直线方程:.19、(1);(2)或.【解析】(1)由条件得,再结合,可求得椭圆方程;(2)由题意设直线l:x=my+4,设M(x1,y1),N(x2,y2),直线方程与椭圆方程联立方程组,消去,整理后利用根与系的关系可得,,再由OM⊥ON,可得x1x2+y1y2=0,从而可列出关于的方程,进而可求出的值,即可得到直线的方程【详解】(1)由条件知,解得,则故椭圆的方程为(2)显然直线l的斜率存在,且斜率不为0,设直线l:x=my+4交椭圆C于M(x1,y1),N(x2,y2),由,当=(24m)2-4(3m2+4)×36>0时,有,,由条件OM⊥ON可得,,即x1x2+y1y2=0,从而有(my1+4)(my2+4)+y1y2=0,(m2+1)y1y2+4m(y1+y2)+16=0,,解得,故且满足>0从而直线l方程为或20、(1)答案见解析(2)答案见解析【解析】(1)由展开图及直观图直接观察可得;(2)选择②,根据线面垂直的判定定理即可证明DF⊥平面.【小问1详解】如图,【小问2详解】若选择①,若此时有平面,则由平面可得,而平面,而平面,故,因为,则平面,由平面可得,故此时矩形为正方形,,矛盾.选择条件②,使得平面,下面证明如图,连接,在长方体中,平面,而平面,故,而,故矩形为正方形,故,而,故平面,而平面,故,同理,又,所以平面.21、(1)(2)存在,【解析】(1)利用抛物线的焦半径公式求得点的横坐标,进而求得p,可得答案;(2)根据题意可设直线方程,和抛物线方程联立,得到根与系数的关系式,利用直线与的斜率互为倒数列出等式,化简可得结论.【小问1详解】(1)则,,,,故C的方程为:;【小问2详解】假设存在定点,使得直线与的斜率互为倒数,由题意可知,直线AB的斜率存在,且不为零,,,,,所以Δ>0y1+即或,,,则,,使得直线与的斜率互为倒数.22、(1)见解析;(2)【解析】分析:(1)由四边形为矩形,可得,再由已知结合面面垂直的性质可得平面,进一步得到,再由,利用线面垂直的判定定理可得面,即可证得平面;(2)取的中点,连接,以为坐标原点,建立如图所示的空间直角坐标系,由题得,解得.进而求得平面和平面的法向量,利用向量的夹角公式,即可求解二面角的余弦值.详解:(1)证明:∵四边形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)设BC中点为,连接,,又面面,且面面,所以面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)知PB⊥平面PCD,故PB⊥,设,可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药用甘草项目营销计划书
- 肚脐穿孔器械项目运营指导方案
- 空贵金属制粉饼盒细分市场深度研究报告
- 自行车曲柄市场发展前景分析及供需格局研究预测报告
- 医用抗真菌霜产品供应链分析
- 成比例的模型车产品供应链分析
- 尿素合成塔产业链招商引资的调研报告
- 家用电净水器产品供应链分析
- 牛奶均质机项目营销计划书
- 冰球守门员用保护垫产品供应链分析
- GB/T 44399-2024移动式金属氢化物可逆储放氢系统
- 物流行业绿色物流发展实施方案
- 2024-2030年中国危化品行业发展趋势与投资前景展望报告
- 2024中小企业数字化水平评测指标
- 化工(危险化学品)企业主要负责人、安管员安全生产管理专项培训考核试卷(附参考答案)
- 2024年人教版小学三年级语文(上册)期中考卷及答案
- 人教版2024-2025学年七年级地理上册 第二章 地图 单元测试卷
- 药店执业药师合同范本
- 《信息化项目验收工作规范》
- 2024年全国软件水平考试之高级网络规划设计师考试重点黑金模拟题(详细参考解析)
- 承插型盘扣式脚手架安全知识培训
评论
0/150
提交评论