版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市第六中学2025届高一数学第一学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平行四边形中,设,,,,下列式子中不正确的是()A. B.C. D.2.已知全集,集合,图中阴影部分所表示的集合为A. B.C. D.3.已知集合A=,B=,则A.AB= B.ABC.AB D.AB=R4.函数图象大致是()A. B.C. D.5.已知,则等于()A. B.C. D.6.“ω=2”是“π为函数的最小正周期”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.的值为A. B.C. D.8.已知函数是R上的偶函数.若对于都有,且当时,,则的值为()A.﹣2 B.﹣1C.1 D.29.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α⊥γ,β⊥γ,则α∥β③若α⊥β,m⊂α,则m⊥β④若α∥β,β∥γ,m⊥α,则m⊥γ其中正确命题的序号是()A.和 B.和C.和 D.和10.下列大小关系正确的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.12.若幂函数的图象过点,则___________.13.设集合,,则______14.求方程在区间内的实数根,用“二分法”确定的下一个有根的区间是____________.15.下面有六个命题:①函数是偶函数;②若向量的夹角为,则;③若向量的起点为,终点为,则与轴正方向的夹角的余弦值是;④终边在轴上的角的集合是;⑤把函数的图像向右平移得到的图像;⑥函数在上是减函数.其中,真命题的编号是__________.(写出所有真命题的编号)16.已知扇形的弧长为6,圆心角弧度数为2,则其面积为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数..(1)判断函数的奇偶性并证明;(2)若函数在区间上单调递减,且值域为,求实数的取值范围18.已知,且,求的值.19.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x+5.20.如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.21.已知函数,且的解集为.(1)求函数的解析式;(2)设,若对于任意的、都有,求的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据向量加减法计算,再进行判断选择.【详解】;;;故选:B【点睛】本题考查向量加减法,考查基本分析求解能力,属基础题.2、A【解析】由题意可知,阴影部分所表示的元素属于,不属于,结合所给的集合求解即可确定阴影部分所表示的集合.【详解】由已知中阴影部分在集合中,而不在集合中,故阴影部分所表示的元素属于,不属于(属于的补集),即.【点睛】本题主要考查集合表示方法,Venn图及其应用等知识,意在考查学生的转化能力和计算求解能力.3、A【解析】由得,所以,选A点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理4、A【解析】利用函数的奇偶性排除部分选项,再利用当x>0时,函数值的正负确定选项即可.【详解】函数f(x)定义域为,所以函数f(x)是奇函数,排除BC;当x>0时,,排除D故选:A5、A【解析】利用换元法设,则,然后利用三角函数的诱导公式进行化简求解即可【详解】设,则,则,则,故选:6、A【解析】直接利用正弦型函数的性质的应用,充分条件和必要条件的应用判断A、B、C、D的结论【详解】解:当“ω=2”时,“函数f(x)=sin(2x﹣)的最小正周期为π”当函数f(x)=sin(ωx﹣)的最小正周期为π”,故ω=±2,故“ω=2”是“π为函数的最小正周期”的充分不必要条件;故选:A7、C【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故选C.8、C【解析】根据题意求得函数的周期,结合函数性质,得到,在代入解析式求值,即可求解.【详解】因为为上的偶函数,所以,又因为对于,都有,所以函数的周期,且当时,,所以故选:C.9、B【解析】根据空间直线和平面平行、垂直的性质分别进行判断即可【详解】①若m⊥α,n∥α,则m⊥n成立,故①正确,②若α⊥γ,β⊥γ,则α∥β不成立,两个平面没有关系,故②错误③若α⊥β,m⊂α,则m⊥β不成立,可能m与β相交,故③错误,④若α∥β,β∥γ,m⊥α,则m⊥γ,成立,故④正确,故正确是①④,故选B【点睛】本题主要考查命题的真假判断,涉及空间直线和平面平行和垂直的判定和性质,考查学生的空间想象能力10、C【解析】根据题意,由于那么根据与0,1的大小关系比较可知结论为,选C.考点:指数函数与对数函数的值域点评:主要是利用指数函数和对数函数的性质来比较大小,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.12、27【解析】代入已知点坐标求出幂函数解析式即可求,【详解】设代入,即,所以,所以.故答案为:27.13、【解析】联立方程组,求出交点坐标,即可得到答案【详解】解方程组,得或.故答案为:14、【解析】根据二分法的步骤可求得结果.【详解】令,因为,,,所以下一个有根的区间是.故答案为:15、①⑤【解析】对于①函数,则=,所以函数是偶函数;故①对;对于②若向量的夹角为,根据数量积定义可得,此时的向量应该为非零向量;故②错;对于③=,所以与轴正方向的夹角的余弦值是-;故③错;对于④终边在轴上的角的集合是;故④错;对于⑤把函数的图像向右平移得到,故⑤对;对于⑥函数=在上是增函数.故⑥错;故答案为①⑤.16、9【解析】根据扇形的弧长是6,圆心角为2,先求得半径,再代入公式求解.【详解】因为扇形的弧长是6,圆心角为2,所以,所以扇形的面积为,故答案为:9.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数(2)【解析】(1)先求定义域,再研究与的关系得函数奇偶性;(2)由函数在上的单调性,得函数的值域,又因为值域为,转化为关于和的关系式,由二次函数的图像与性质求的取值范围【详解】(1)函数定义域为,且.所以函数为奇函数(2)考察为单调增函数,利用复合函数单调性得到,所以,,即,即为方程的两个根,且,令,满足条件,解得.【点睛】判断函数的奇偶性,要先求定义域,判断定义域是否关于原点对称再求与的关系;计算函数的值域,要先根据函数的定义域及单调性求解18、【解析】先利用已知求得和的值,然后利用根据两角和的公式展开,即可得到的值解析:.19、(1);(2)【解析】(1)设二次函数f(x)=ax2+bx+c,利用待定系数法即可求出f(x);(2)利用一元二次不等式的解法即可得出【详解】(1).设二次函数f(x)=ax2+bx+c,∵函数f(x)满足f(x+1)﹣f(x)=2x,f(x+1)-f(x)=-=2ax+a+b=2x,解得.且f(0)=1.c=1∴f(x)=x2﹣x+1(2)不等式f(x)>2x+5,即x2﹣x+1>2x+5,化为x2﹣3x﹣4>0化为(x﹣4)(x+1)>0,解得x>4或x<﹣1∴原不等式的解集为【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题.20、(1)证明略(2)【解析】(Ⅰ)要证平面,由已知平面,已经有,因此在直角梯形中证明即可,通过计算得,而是中点,则有;(Ⅱ)PB与平面ABCD所成的角是,下面关键是作出PB与平面PAE所成的角,由(Ⅰ)作,分别与相交于,连接,则是PB与平面PAE所成的角,由这两个角相等,可得,同样在直角梯形中可计算出,也即四棱锥P-ABCD的高,体积可得.另外也可建立空间直角坐标系,通过空间向量法求得结论,第(Ⅱ)小题中关键是求点的坐标,注意这里直线与平面所成的角相等转化为直线与平面的法向量的夹角相等试题解析:解法1(Ⅰ如图(1)),连接AC,由AB=4,,是的中点,所以所以而内的两条相交直线,所以CD⊥平面PAE(Ⅱ)过点B作由(Ⅰ)CD⊥平面PAE知,BG⊥平面PAE.于是为直线PB与平面PAE所成的角,且由知,为直线与平面所成的角由题意,知因为所以由所以四边形是平行四边形,故于是在中,所以于是又梯形的面积为所以四棱锥的体积为解法2:如图(2),以A为坐标原点,所在直线分别为建立空间直角坐标系.设则相关的各点坐标为:(Ⅰ)易知因为所以而是平面内的两条相交直线,所以(Ⅱ)由题设和(Ⅰ)知,分别是,的法向量,而PB与所成的角和PB与所成的角相等,所以由(Ⅰ)知,由故解得又梯形ABCD的面积为,所以四棱锥的体积为.考点:线面垂直的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国婴儿纸尿裤市场供需渠道分析及发展竞争力研究报告
- 2024-2030年中国可再分散乳胶粉行业发展潜力及投资战略规划研究报告
- 2024-2030年中国卫生消毒市场竞争格局展望及投资策略分析报告
- 2024年幼儿园管理权转移协议3篇
- 梅河口康美职业技术学院《精细化学品化学及工艺》2023-2024学年第一学期期末试卷
- 眉山药科职业学院《电工电子基础A》2023-2024学年第一学期期末试卷
- 2024年度生产车间承包与绿色生产技术研发合同3篇
- 满洲里俄语职业学院《涉老企业品牌管理》2023-2024学年第一学期期末试卷
- 茅台学院《品牌叙事和声誉管理》2023-2024学年第一学期期末试卷
- 漯河食品职业学院《设计室内》2023-2024学年第一学期期末试卷
- 基于风险的软件测试策略
- 大锁孙天宇小品《时间都去哪了》台词剧本完整版-一年一度喜剧大赛
- 双重血浆置换
- 2023北京海淀区高二上学期期末英语试题及答案
- 从分数到分式教学设计-
- 酒店长期租房合同模板(16篇)
- 场域与对话-公共空间里的雕塑 课件-2023-2024学年高中美术人美版(2019)美术鉴赏
- 关于违规收受礼品礼金警示教育心得体会范文
- 国家开放大学《国际商法》形考任务1-5参考答案
- 颅脑损伤课件
- 沪教版英语八年级上册知识点归纳汇总
评论
0/150
提交评论